NiloofarMomeni's picture
End of training
d3d8273 verified
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-VD
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8349877949552482

distilhubert-finetuned-VD

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4702
  • Accuracy: 0.8350

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.555 1.0 167 0.4702 0.8350
0.3965 2.0 334 0.4398 0.7570
0.4106 3.0 501 0.7742 0.6713
0.4372 4.0 668 0.9340 0.6827
0.2087 5.0 835 1.0133 0.7574
0.124 6.0 1002 1.1049 0.7437
0.0509 7.0 1169 1.2264 0.7590
0.0016 8.0 1336 1.2315 0.7845
0.0064 9.0 1503 1.3620 0.7762
0.0006 10.0 1670 1.3149 0.8039
0.0007 11.0 1837 1.2818 0.8116
0.0003 12.0 2004 1.2635 0.8298
0.0003 13.0 2171 1.3287 0.8225
0.0002 14.0 2338 1.3200 0.8295
0.0001 15.0 2505 1.4146 0.8226
0.0001 16.0 2672 1.4359 0.8221
0.0001 17.0 2839 1.4443 0.8233
0.0001 18.0 3006 1.5031 0.8184
0.0001 19.0 3173 1.5111 0.8182
0.0001 20.0 3340 1.5145 0.8182

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2