vit-base-patch16-224-in21k-finetuned-footulcer

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0555
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.97 8 0.6026 0.7069
0.6438 1.94 16 0.5132 0.7328
0.4569 2.91 24 0.4402 0.7586
0.3098 4.0 33 0.2934 0.8448
0.2204 4.97 41 0.2969 0.8879
0.2204 5.94 49 0.1356 0.9655
0.1668 6.91 57 0.0659 0.9914
0.1531 8.0 66 0.0555 1.0
0.1096 8.97 74 0.0913 0.9741
0.112 9.94 82 0.0454 0.9914
0.1095 10.91 90 0.0463 0.9914
0.1095 12.0 99 0.0648 0.9914
0.0829 12.97 107 0.0427 0.9914
0.0741 13.94 115 0.0514 0.9914
0.0679 14.55 120 0.0548 0.9914

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Nitish2801/vit-base-patch16-224-in21k-finetuned-footulcer

Finetuned
(1817)
this model

Evaluation results