File size: 2,716 Bytes
e382fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5f77
e382fcf
 
 
 
 
 
 
 
 
caa5f77
 
e382fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-footulcer
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k-finetuned-footulcer

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0555
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.97  | 8    | 0.6026          | 0.7069   |
| 0.6438        | 1.94  | 16   | 0.5132          | 0.7328   |
| 0.4569        | 2.91  | 24   | 0.4402          | 0.7586   |
| 0.3098        | 4.0   | 33   | 0.2934          | 0.8448   |
| 0.2204        | 4.97  | 41   | 0.2969          | 0.8879   |
| 0.2204        | 5.94  | 49   | 0.1356          | 0.9655   |
| 0.1668        | 6.91  | 57   | 0.0659          | 0.9914   |
| 0.1531        | 8.0   | 66   | 0.0555          | 1.0      |
| 0.1096        | 8.97  | 74   | 0.0913          | 0.9741   |
| 0.112         | 9.94  | 82   | 0.0454          | 0.9914   |
| 0.1095        | 10.91 | 90   | 0.0463          | 0.9914   |
| 0.1095        | 12.0  | 99   | 0.0648          | 0.9914   |
| 0.0829        | 12.97 | 107  | 0.0427          | 0.9914   |
| 0.0741        | 13.94 | 115  | 0.0514          | 0.9914   |
| 0.0679        | 14.55 | 120  | 0.0548          | 0.9914   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2