File size: 2,716 Bytes
e382fcf caa5f77 e382fcf caa5f77 e382fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-footulcer
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-footulcer
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0555
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.97 | 8 | 0.6026 | 0.7069 |
| 0.6438 | 1.94 | 16 | 0.5132 | 0.7328 |
| 0.4569 | 2.91 | 24 | 0.4402 | 0.7586 |
| 0.3098 | 4.0 | 33 | 0.2934 | 0.8448 |
| 0.2204 | 4.97 | 41 | 0.2969 | 0.8879 |
| 0.2204 | 5.94 | 49 | 0.1356 | 0.9655 |
| 0.1668 | 6.91 | 57 | 0.0659 | 0.9914 |
| 0.1531 | 8.0 | 66 | 0.0555 | 1.0 |
| 0.1096 | 8.97 | 74 | 0.0913 | 0.9741 |
| 0.112 | 9.94 | 82 | 0.0454 | 0.9914 |
| 0.1095 | 10.91 | 90 | 0.0463 | 0.9914 |
| 0.1095 | 12.0 | 99 | 0.0648 | 0.9914 |
| 0.0829 | 12.97 | 107 | 0.0427 | 0.9914 |
| 0.0741 | 13.94 | 115 | 0.0514 | 0.9914 |
| 0.0679 | 14.55 | 120 | 0.0548 | 0.9914 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|