license: apache-2.0
language:
- en
pipeline_tag: image-to-text
inference:
parameters:
max_length: 800
Nougat-LaTeX-based
- Model type: Donut
- Finetuned from: facebook/nougat-base
- Repository: source code
Nougat-LaTeX-based is fine-tuned from facebook/nougat-base with im2latex-100k to boost its proficiency in generating LaTeX code from images. Since the initial encoder input image size of nougat was unsuitable for equation image segments, leading to potential rescaling artifacts that degrades the generation quality of LaTeX code. To address this, Nougat-LaTeX-based adjusts the input resolution and uses an adaptive padding approach to ensure that equation image segments in the wild are resized to closely match the resolution of the training data.
Evaluation
Evaluated on an image-equation pair dataset collected from Wikipedia, arXiv, and im2latex-100k, curated by lukas-blecher
model | token_acc ↑ | normed edit distance ↓ |
---|---|---|
pix2tex | 0.5346 | 0.10312 |
pix2tex* | 0.60 | 0.10 |
nougat-latex-based | 0.623850 | 0.06180 |
pix2tex is a ResNet + ViT + Text Decoder architecture introduced in LaTeX-OCR.
pix2tex*: reported from LaTeX-OCR; pix2tex: my evaluation with the released checkpoint ; nougat-latex-based: evaluated on results generated with beam-search strategy.
Requirements
pip install transformers >= 4.34.0
Uses
import torch
from PIL import Image
from transformers import VisionEncoderDecoderModel
from transformers.models.nougat import NougatTokenizerFast
from nougat_latex import NougatLaTexProcessor
model_name = "Norm/nougat-latex-base"
device = "cuda" if torch.cuda.is_available() else "cpu"
# init model
model = VisionEncoderDecoderModel.from_pretrained(model_name).to(device)
# init processor
tokenizer = NougatTokenizerFast.from_pretrained(model_name)
latex_processor = NougatLaTexProcessor.from_pretrained(model_name)
# run test
image = Image.open("path/to/latex/image.png")
if not image.mode == "RGB":
image = image.convert('RGB')
pixel_values = latex_processor(image, return_tensors="pt").pixel_values
decoder_input_ids = tokenizer(tokenizer.bos_token, add_special_tokens=False,
return_tensors="pt").input_ids
with torch.no_grad():
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_length,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
num_beams=5,
bad_words_ids=[[tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = tokenizer.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(tokenizer.eos_token, "").replace(tokenizer.pad_token, "").replace(tokenizer.bos_token, "")
print(sequence)