Vit-GPT2-COCO2017Flickr-40k-04
This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.4650
- eval_rouge1: 42.848
- eval_rouge2: 17.6905
- eval_rougeL: 36.5451
- eval_rougeLsum: 38.9854
- eval_gen_len: 12.025
- eval_samples_per_second: 7.371
- eval_steps_per_second: 1.843
- epoch: 1.4
- step: 7000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.1497 | 0.1 | 500 | 0.5462 | 40.1774 | 14.6199 | 36.3335 | 36.3518 | 12.5965 |
0.1604 | 0.2 | 1000 | 0.5302 | 41.4714 | 16.0237 | 37.5992 | 37.5915 | 11.914 |
0.1631 | 0.3 | 1500 | 0.5436 | 40.3816 | 14.6958 | 36.6109 | 36.6027 | 12.3295 |
0.1634 | 0.4 | 2000 | 0.5266 | 40.9484 | 15.9068 | 37.5194 | 37.5088 | 12.033 |
0.1576 | 0.5 | 2500 | 0.5544 | 40.373 | 15.012 | 36.5218 | 36.5141 | 12.3345 |
0.1599 | 0.6 | 3000 | 0.5425 | 40.7552 | 15.2754 | 37.1059 | 37.1299 | 12.191 |
0.291 | 0.7 | 3500 | 0.4545 | 41.5934 | 16.251 | 37.7291 | 37.7113 | 12.0295 |
0.2825 | 0.8 | 4000 | 0.4558 | 42.6728 | 17.1703 | 38.8692 | 38.8841 | 12.246 |
0.2737 | 0.9 | 4500 | 0.4565 | 43.0036 | 16.8421 | 39.1761 | 39.1693 | 11.7975 |
0.2683 | 1.0 | 5000 | 0.4576 | 42.1341 | 16.7973 | 38.2881 | 38.3083 | 11.8655 |
0.1687 | 1.1 | 5500 | 0.4996 | 41.7152 | 16.4042 | 37.7724 | 37.7629 | 12.384 |
0.168 | 1.2 | 6000 | 0.5046 | 41.6521 | 16.6159 | 37.7915 | 37.7778 | 12.661 |
0.1688 | 1.3 | 6500 | 0.5020 | 42.3292 | 17.1408 | 38.5407 | 38.5282 | 11.846 |
0.1682 | 1.4 | 7000 | 0.5045 | 42.848 | 17.6905 | 38.9854 | 38.9896 | 12.025 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
Inference API (serverless) does not yet support transformers models for this pipeline type.