Phi-2-DPO / README.md
NovoCode's picture
Update README.md
f6df7b3 verified
|
raw
history blame
3.29 kB
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: phi-sft-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Intel/orca_dpo_pairs
type:
system_prompt: ""
field_system: system
field_instruction: question
field_output: rejected
field_output: chosen
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi-sft-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
</details><br>
# phi-sft-out
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the Intel/orca_dpo_pairs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3053 | 0.0 | 1 | 1.3288 |
| 1.2314 | 0.25 | 287 | 1.3183 |
| 1.1664 | 0.5 | 574 | 1.3090 |
| 1.4349 | 0.75 | 861 | 1.3034 |
| 1.4875 | 1.0 | 1148 | 1.3012 |
| 1.3461 | 1.23 | 1435 | 1.3006 |
| 1.3247 | 1.48 | 1722 | 1.2998 |
| 1.2906 | 1.73 | 2009 | 1.2999 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0