nsql-llama-2-7B / README.md
senwu's picture
initial commit
34668d2
|
raw
history blame
5.74 kB
---
license: llama2
inference:
parameters:
do_sample: false
max_length: 200
widget:
- text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT"
example_title: "Number stadiums"
- text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT"
example_title: "Open work orders"
- text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT"
example_title: "Stadium capacity"
---
# NSQL-Llama-2-7B
## Model Description
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
In this repository we are introducing a new member of NSQL, NSQL-Llama-2-7B. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs.
## Training Data
The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The labeled text-to-SQL pairs come from more than 20 public sources across the web from standard datasets. We hold out Spider and GeoQuery datasets for use in evaluation.
## Evaluation Data
We evaluate our models on two text-to-SQL benchmarks: Spider and GeoQuery.
## Training Procedure
NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We pre-trained for 3 epochs and fine-tuned for 10 epochs.
## Intended Use and Limitations
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting `SELECT` queries.
## How to Use
Example 1:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B")
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16)
text = """CREATE TABLE stadium (
stadium_id number,
location text,
name text,
capacity number,
highest number,
lowest number,
average number
)
CREATE TABLE singer (
singer_id number,
name text,
country text,
song_name text,
song_release_year text,
age number,
is_male others
)
CREATE TABLE concert (
concert_id number,
concert_name text,
theme text,
stadium_id text,
year text
)
CREATE TABLE singer_in_concert (
concert_id number,
singer_id text
)
-- Using valid SQLite, answer the following questions for the tables provided above.
-- What is the maximum, the average, and the minimum capacity of stadiums ?
SELECT"""
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=500)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
Example 2:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B")
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16)
text = """CREATE TABLE stadium (
stadium_id number,
location text,
name text,
capacity number,
)
-- Using valid SQLite, answer the following questions for the tables provided above.
-- how many stadiums in total?
SELECT"""
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=500)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
Example 3:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B")
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16)
text = """CREATE TABLE work_orders (
ID NUMBER,
CREATED_AT TEXT,
COST FLOAT,
INVOICE_AMOUNT FLOAT,
IS_DUE BOOLEAN,
IS_OPEN BOOLEAN,
IS_OVERDUE BOOLEAN,
COUNTRY_NAME TEXT,
)
-- Using valid SQLite, answer the following questions for the tables provided above.
-- how many work orders are open?
SELECT"""
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=500)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/NSQL).