SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/bge-base-mbpp-processed")
# Run inference
sentences = [
    'Write a function to find sum and average of first n natural numbers.',
    'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n    total = total + value\r\n average = total / number\r\n return (total,average)',
    'def long_words(n, str):\r\n    word_len = []\r\n    txt = str.split(" ")\r\n    for x in txt:\r\n        if len(x) > n:\r\n            word_len.append(x)\r\n    return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9642
dot_accuracy 0.0358
manhattan_accuracy 0.9623
euclidean_accuracy 0.9642
max_accuracy 0.9642

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss sts-dev_max_accuracy
0.0050 100 4.2871 -
0.0101 200 4.1063 -
0.0151 300 4.0535 -
0.0202 400 4.0162 -
0.0252 500 3.9802 -
0.0302 600 3.982 -
0.0353 700 3.9349 -
0.0403 800 3.9372 -
0.0453 900 3.9175 -
0.0504 1000 3.9201 -
0.0554 1100 3.9036 -
0.0605 1200 3.8985 -
0.0655 1300 3.8994 -
0.0705 1400 3.8979 -
0.0756 1500 3.8846 -
0.0806 1600 3.897 -
0.0857 1700 3.8779 -
0.0907 1800 3.895 -
0.0957 1900 3.8793 -
0.1008 2000 3.8677 -
0.1058 2100 3.8672 -
0.1109 2200 3.8744 -
0.1159 2300 3.8721 -
0.1209 2400 3.8554 -
0.1260 2500 3.8379 -
0.1310 2600 3.8477 -
0.1360 2700 3.8625 -
0.1411 2800 3.8426 -
0.1461 2900 3.8475 -
0.1512 3000 3.8462 -
0.1562 3100 3.8314 -
0.1612 3200 3.8227 -
0.1663 3300 3.8311 -
0.1713 3400 3.8305 -
0.1764 3500 3.8249 -
0.1814 3600 3.842 -
0.1864 3700 3.8259 -
0.1915 3800 3.8295 -
0.1965 3900 3.8217 -
0.2016 4000 3.8362 -
0.2066 4100 3.8354 -
0.2116 4200 3.8175 -
0.2167 4300 3.8108 -
0.2217 4400 3.84 -
0.2267 4500 3.8206 -
0.2318 4600 3.8065 -
0.2368 4700 3.8161 -
0.2419 4800 3.8234 -
0.2469 4900 3.8112 -
0.2519 5000 3.8006 -
0.2570 5100 3.7996 -
0.2620 5200 3.8104 -
0.2671 5300 3.7975 -
0.2721 5400 3.7944 -
0.2771 5500 3.8037 -
0.2822 5600 3.7996 -
0.2872 5700 3.7883 -
0.2923 5800 3.7978 -
0.2973 5900 3.7889 -
0.3023 6000 3.7794 -
0.3074 6100 3.7669 -
0.3124 6200 3.7844 -
0.3174 6300 3.7687 -
0.3225 6400 3.7915 -
0.3275 6500 3.7505 -
0.3326 6600 3.7979 -
0.3376 6700 3.7681 -
0.3426 6800 3.7738 -
0.3477 6900 3.7702 -
0.3527 7000 3.7679 -
0.3578 7100 3.7862 -
0.3628 7200 3.7718 -
0.3678 7300 3.7898 -
0.3729 7400 3.7832 -
0.3779 7500 3.7701 -
0.3829 7600 3.7805 -
0.3880 7700 3.7725 -
0.3930 7800 3.7476 -
0.3981 7900 3.7612 -
0.4031 8000 3.7555 -
0.4081 8100 3.7489 -
0.4132 8200 3.7507 -
0.4182 8300 3.741 -
0.4233 8400 3.7465 -
0.4283 8500 3.7445 -
0.4333 8600 3.7536 -
0.4384 8700 3.7279 -
0.4434 8800 3.745 -
0.4485 8900 3.7712 -
0.4535 9000 3.7429 -
0.4585 9100 3.7386 -
0.4636 9200 3.7328 -
0.4686 9300 3.735 -
0.4736 9400 3.7451 -
0.4787 9500 3.7292 -
0.4837 9600 3.7381 -
0.4888 9700 3.7346 -
0.4938 9800 3.7396 -
0.4988 9900 3.7122 -
0.5039 10000 3.7295 -
0.5089 10100 3.738 -
0.5140 10200 3.7272 -
0.5190 10300 3.7233 -
0.5240 10400 3.7066 -
0.5291 10500 3.713 -
0.5341 10600 3.7185 -
0.5392 10700 3.7236 -
0.5442 10800 3.7086 -
0.5492 10900 3.718 -
0.5543 11000 3.7296 -
0.5593 11100 3.7276 -
0.5643 11200 3.7164 -
0.5694 11300 3.7119 -
0.5744 11400 3.6979 -
0.5795 11500 3.7095 -
0.5845 11600 3.7067 -
0.5895 11700 3.7018 -
0.5946 11800 3.727 -
0.5996 11900 3.7136 -
0.6047 12000 3.7233 -
0.6097 12100 3.7076 -
0.6147 12200 3.7243 -
0.6198 12300 3.6966 -
0.6248 12400 3.7058 -
0.6298 12500 3.698 -
0.6349 12600 3.6934 -
0.6399 12700 3.7046 -
0.6450 12800 3.6986 -
0.6500 12900 3.7134 -
0.6550 13000 3.7019 -
0.6601 13100 3.7154 -
0.6651 13200 3.7056 -
0.6702 13300 3.6948 -
0.6752 13400 3.697 -
0.6802 13500 3.6998 -
0.6853 13600 3.6881 -
0.6903 13700 3.6982 -
0.6954 13800 3.6861 -
0.7004 13900 3.6816 -
0.7054 14000 3.7004 -
0.7105 14100 3.6895 -
0.7155 14200 3.7045 -
0.7205 14300 3.7078 -
0.7256 14400 3.6884 -
0.7306 14500 3.6839 -
0.7357 14600 3.6891 -
0.7407 14700 3.6864 -
0.7457 14800 3.7069 -
0.7508 14900 3.6879 -
0.7558 15000 3.7049 -
0.7609 15100 3.7099 -
0.7659 15200 3.6908 -
0.7709 15300 3.6973 -
0.7760 15400 3.6775 -
0.7810 15500 3.6776 -
0.7861 15600 3.706 -
0.7911 15700 3.6941 -
0.7961 15800 3.6974 -
0.8012 15900 3.6706 -
0.8062 16000 3.6922 -
0.8112 16100 3.6898 -
0.8163 16200 3.7005 -
0.8213 16300 3.691 -
0.8264 16400 3.7066 -
0.8314 16500 3.6959 -
0.8364 16600 3.6944 -
0.8415 16700 3.6724 -
0.8465 16800 3.6783 -
0.8516 16900 3.683 -
0.8566 17000 3.6929 -
0.8616 17100 3.6823 -
0.8667 17200 3.6737 -
0.8717 17300 3.6847 -
0.8768 17400 3.6786 -
0.8818 17500 3.7018 -
0.8868 17600 3.6944 -
0.8919 17700 3.687 -
0.8969 17800 3.6841 -
0.9019 17900 3.6764 -
0.9070 18000 3.6779 -
0.9120 18100 3.689 -
0.9171 18200 3.6837 -
0.9221 18300 3.7034 -
0.9271 18400 3.669 -
0.9322 18500 3.67 -
0.9372 18600 3.6868 -
0.9423 18700 3.6916 -
0.9473 18800 3.6751 -
0.9523 18900 3.6935 -
0.9574 19000 3.702 -
0.9624 19100 3.6761 -
0.9674 19200 3.6798 -
0.9725 19300 3.6844 -
0.9775 19400 3.6775 -
0.9826 19500 3.6679 -
0.9876 19600 3.6793 -
0.9926 19700 3.6833 -
0.9977 19800 3.6717 -
1.0 19846 - 0.9642

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.40.0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Nutanix/bge-base-mbpp-processed

Finetuned
(352)
this model

Evaluation results