metadata
base_model: jinaai/jina-embeddings-v2-base-code
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:317521
- loss:TripletLoss
widget:
- source_sentence: >-
Write a function to extract every specified element from a given two
dimensional list.
sentences:
- "def nCr_mod_p(n, r, p): \r\n\tif (r > n- r): \r\n\t\tr = n - r \r\n\tC = [0 for i in range(r + 1)] \r\n\tC[0] = 1 \r\n\tfor i in range(1, n + 1): \r\n\t\tfor j in range(min(i, r), 0, -1): \r\n\t\t\tC[j] = (C[j] + C[j-1]) % p \r\n\treturn C[r] "
- "import cmath\r\ndef len_complex(a,b):\r\n cn=complex(a,b)\r\n length=abs(cn)\r\n return length"
- "def specified_element(nums, N):\r\n result = [i[N] for i in nums]\r\n return result"
- source_sentence: >-
Write a python function to find the kth element in an array containing odd
elements first and then even elements.
sentences:
- "def get_Number(n, k): \r\n arr = [0] * n; \r\n i = 0; \r\n odd = 1; \r\n while (odd <= n): \r\n arr[i] = odd; \r\n i += 1; \r\n odd += 2;\r\n even = 2; \r\n while (even <= n): \r\n arr[i] = even; \r\n i += 1;\r\n even += 2; \r\n return arr[k - 1]; "
- "def sort_matrix(M):\r\n result = sorted(M, key=sum)\r\n return result"
- "INT_BITS = 32\r\ndef left_Rotate(n,d): \r\n return (n << d)|(n >> (INT_BITS - d)) "
- source_sentence: >-
Write a function to remove all the words with k length in the given
string.
sentences:
- "def remove_tuples(test_list, K):\r\n res = [ele for ele in test_list if len(ele) != K]\r\n return (res) "
- "def is_Sub_Array(A,B,n,m): \r\n i = 0; j = 0; \r\n while (i < n and j < m): \r\n if (A[i] == B[j]): \r\n i += 1; \r\n j += 1; \r\n if (j == m): \r\n return True; \r\n else: \r\n i = i - j + 1; \r\n j = 0; \r\n return False; "
- "def remove_length(test_str, K):\r\n temp = test_str.split()\r\n res = [ele for ele in temp if len(ele) != K]\r\n res = ' '.join(res)\r\n return (res) "
- source_sentence: >-
Write a function to find the occurence of characters 'std' in the given
string 1. list item 1. list item 1. list item 2. list item 2. list item 2.
list item
sentences:
- "def magic_square_test(my_matrix):\r\n iSize = len(my_matrix[0])\r\n sum_list = []\r\n sum_list.extend([sum (lines) for lines in my_matrix]) \r\n for col in range(iSize):\r\n sum_list.append(sum(row[col] for row in my_matrix))\r\n result1 = 0\r\n for i in range(0,iSize):\r\n result1 +=my_matrix[i][i]\r\n sum_list.append(result1) \r\n result2 = 0\r\n for i in range(iSize-1,-1,-1):\r\n result2 +=my_matrix[i][i]\r\n sum_list.append(result2)\r\n if len(set(sum_list))>1:\r\n return False\r\n return True"
- "def count_occurance(s):\r\n count=0\r\n for i in range(len(s)):\r\n if (s[i]== 's' and s[i+1]=='t' and s[i+2]== 'd'):\r\n count = count + 1\r\n return count"
- "def power(a,b):\r\n\tif b==0:\r\n\t\treturn 1\r\n\telif a==0:\r\n\t\treturn 0\r\n\telif b==1:\r\n\t\treturn a\r\n\telse:\r\n\t\treturn a*power(a,b-1)"
- source_sentence: Write a function to find sum and average of first n natural numbers.
sentences:
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t"
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t"
- "def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)"
model-index:
- name: SentenceTransformer based on jinaai/jina-embeddings-v2-base-code
results:
- task:
type: triplet
name: Triplet
dataset:
name: sts dev
type: sts-dev
metrics:
- type: cosine_accuracy
value: 0.4794644366223058
name: Cosine Accuracy
- type: dot_accuracy
value: 0.3189056517809246
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.49047258618028966
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.47951587657351136
name: Euclidean Accuracy
- type: max_accuracy
value: 0.49047258618028966
name: Max Accuracy
SentenceTransformer based on jinaai/jina-embeddings-v2-base-code
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-code. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v2-base-code
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/jina-embeddings-v2-base-code-mbpp")
# Run inference
sentences = [
'Write a function to find sum and average of first n natural numbers.',
'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
sts-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.4795 |
dot_accuracy | 0.3189 |
manhattan_accuracy | 0.4905 |
euclidean_accuracy | 0.4795 |
max_accuracy | 0.4905 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-dev_max_accuracy |
---|---|---|---|
0 | 0 | - | 0.5027 |
0.0050 | 100 | 5.0 | - |
0.0101 | 200 | 5.0 | - |
0.0151 | 300 | 4.9999 | - |
0.0202 | 400 | 5.0001 | - |
0.0252 | 500 | 5.0 | - |
0.0302 | 600 | 5.0 | - |
0.0353 | 700 | 4.9999 | - |
0.0403 | 800 | 5.0001 | - |
0.0453 | 900 | 5.0 | - |
0.0504 | 1000 | 5.0001 | - |
0.0554 | 1100 | 4.9999 | - |
0.0605 | 1200 | 5.0 | - |
0.0655 | 1300 | 5.0 | - |
0.0705 | 1400 | 4.9999 | - |
0.0756 | 1500 | 5.0 | - |
0.0806 | 1600 | 4.9999 | - |
0.0857 | 1700 | 5.0001 | - |
0.0907 | 1800 | 5.0001 | - |
0.0957 | 1900 | 5.0 | - |
0.1008 | 2000 | 5.0001 | - |
0.1058 | 2100 | 5.0 | - |
0.1109 | 2200 | 4.9999 | - |
0.1159 | 2300 | 4.9999 | - |
0.1209 | 2400 | 5.0 | - |
0.1260 | 2500 | 5.0 | - |
0.1310 | 2600 | 5.0001 | - |
0.1360 | 2700 | 4.9999 | - |
0.1411 | 2800 | 5.0001 | - |
0.1461 | 2900 | 5.0001 | - |
0.1512 | 3000 | 5.0 | - |
0.1562 | 3100 | 5.0001 | - |
0.1612 | 3200 | 4.9999 | - |
0.1663 | 3300 | 5.0001 | - |
0.1713 | 3400 | 4.9999 | - |
0.1764 | 3500 | 4.9999 | - |
0.1814 | 3600 | 4.9999 | - |
0.1864 | 3700 | 5.0 | - |
0.1915 | 3800 | 4.9999 | - |
0.1965 | 3900 | 5.0 | - |
0.2016 | 4000 | 5.0 | - |
0.2066 | 4100 | 5.0 | - |
0.2116 | 4200 | 5.0002 | - |
0.2167 | 4300 | 5.0002 | - |
0.2217 | 4400 | 5.0 | - |
0.2267 | 4500 | 5.0001 | - |
0.2318 | 4600 | 5.0001 | - |
0.2368 | 4700 | 5.0001 | - |
0.2419 | 4800 | 4.9998 | - |
0.2469 | 4900 | 5.0 | - |
0.2519 | 5000 | 4.9999 | - |
0.2570 | 5100 | 4.9999 | - |
0.2620 | 5200 | 5.0001 | - |
0.2671 | 5300 | 5.0001 | - |
0.2721 | 5400 | 4.9999 | - |
0.2771 | 5500 | 5.0 | - |
0.2822 | 5600 | 5.0002 | - |
0.2872 | 5700 | 5.0002 | - |
0.2923 | 5800 | 4.9999 | - |
0.2973 | 5900 | 5.0 | - |
0.3023 | 6000 | 5.0001 | - |
0.3074 | 6100 | 4.9999 | - |
0.3124 | 6200 | 4.9997 | - |
0.3174 | 6300 | 4.9999 | - |
0.3225 | 6400 | 5.0 | - |
0.3275 | 6500 | 4.9998 | - |
0.3326 | 6600 | 5.0 | - |
0.3376 | 6700 | 4.9998 | - |
0.3426 | 6800 | 5.0001 | - |
0.3477 | 6900 | 5.0002 | - |
0.3527 | 7000 | 5.0 | - |
0.3578 | 7100 | 4.9998 | - |
0.3628 | 7200 | 5.0003 | - |
0.3678 | 7300 | 5.0 | - |
0.3729 | 7400 | 5.0002 | - |
0.3779 | 7500 | 5.0 | - |
0.3829 | 7600 | 5.0001 | - |
0.3880 | 7700 | 5.0002 | - |
0.3930 | 7800 | 5.0001 | - |
0.3981 | 7900 | 5.0001 | - |
0.4031 | 8000 | 5.0 | - |
0.4081 | 8100 | 4.9998 | - |
0.4132 | 8200 | 4.9999 | - |
0.4182 | 8300 | 5.0001 | - |
0.4233 | 8400 | 5.0001 | - |
0.4283 | 8500 | 5.0 | - |
0.4333 | 8600 | 5.0002 | - |
0.4384 | 8700 | 5.0001 | - |
0.4434 | 8800 | 5.0 | - |
0.4485 | 8900 | 4.9996 | - |
0.4535 | 9000 | 4.9999 | - |
0.4585 | 9100 | 5.0 | - |
0.4636 | 9200 | 4.9999 | - |
0.4686 | 9300 | 4.9999 | - |
0.4736 | 9400 | 4.9998 | - |
0.4787 | 9500 | 5.0001 | - |
0.4837 | 9600 | 4.9998 | - |
0.4888 | 9700 | 4.9999 | - |
0.4938 | 9800 | 5.0 | - |
0.4988 | 9900 | 4.9998 | - |
0.5039 | 10000 | 5.0 | - |
0.5089 | 10100 | 5.0002 | - |
0.5140 | 10200 | 5.0003 | - |
0.5190 | 10300 | 4.9998 | - |
0.5240 | 10400 | 4.9999 | - |
0.5291 | 10500 | 5.0 | - |
0.5341 | 10600 | 4.9999 | - |
0.5392 | 10700 | 5.0 | - |
0.5442 | 10800 | 5.0001 | - |
0.5492 | 10900 | 4.9999 | - |
0.5543 | 11000 | 5.0 | - |
0.5593 | 11100 | 4.9999 | - |
0.5643 | 11200 | 5.0 | - |
0.5694 | 11300 | 4.9999 | - |
0.5744 | 11400 | 4.9997 | - |
0.5795 | 11500 | 5.0002 | - |
0.5845 | 11600 | 4.9999 | - |
0.5895 | 11700 | 5.0001 | - |
0.5946 | 11800 | 5.0001 | - |
0.5996 | 11900 | 5.0004 | - |
0.6047 | 12000 | 4.9998 | - |
0.6097 | 12100 | 5.0002 | - |
0.6147 | 12200 | 4.9998 | - |
0.6198 | 12300 | 5.0001 | - |
0.6248 | 12400 | 5.0001 | - |
0.6298 | 12500 | 5.0001 | - |
0.6349 | 12600 | 4.9999 | - |
0.6399 | 12700 | 5.0001 | - |
0.6450 | 12800 | 4.9999 | - |
0.6500 | 12900 | 5.0001 | - |
0.6550 | 13000 | 4.9999 | - |
0.6601 | 13100 | 5.0002 | - |
0.6651 | 13200 | 5.0001 | - |
0.6702 | 13300 | 5.0002 | - |
0.6752 | 13400 | 4.9997 | - |
0.6802 | 13500 | 5.0001 | - |
0.6853 | 13600 | 4.9996 | - |
0.6903 | 13700 | 4.9999 | - |
0.6954 | 13800 | 5.0002 | - |
0.7004 | 13900 | 4.9997 | - |
0.7054 | 14000 | 5.0 | - |
0.7105 | 14100 | 5.0001 | - |
0.7155 | 14200 | 5.0001 | - |
0.7205 | 14300 | 4.9999 | - |
0.7256 | 14400 | 4.9999 | - |
0.7306 | 14500 | 4.9998 | - |
0.7357 | 14600 | 5.0 | - |
0.7407 | 14700 | 5.0002 | - |
0.7457 | 14800 | 5.0001 | - |
0.7508 | 14900 | 4.9998 | - |
0.7558 | 15000 | 5.0002 | - |
0.7609 | 15100 | 5.0002 | - |
0.7659 | 15200 | 5.0 | - |
0.7709 | 15300 | 5.0002 | - |
0.7760 | 15400 | 5.0 | - |
0.7810 | 15500 | 5.0001 | - |
0.7861 | 15600 | 5.0 | - |
0.7911 | 15700 | 5.0004 | - |
0.7961 | 15800 | 5.0 | - |
0.8012 | 15900 | 5.0001 | - |
0.8062 | 16000 | 5.0003 | - |
0.8112 | 16100 | 4.9999 | - |
0.8163 | 16200 | 5.0 | - |
0.8213 | 16300 | 4.9999 | - |
0.8264 | 16400 | 5.0 | - |
0.8314 | 16500 | 4.9999 | - |
0.8364 | 16600 | 4.9998 | - |
0.8415 | 16700 | 4.9998 | - |
0.8465 | 16800 | 5.0002 | - |
0.8516 | 16900 | 4.9999 | - |
0.8566 | 17000 | 4.9999 | - |
0.8616 | 17100 | 4.9997 | - |
0.8667 | 17200 | 5.0001 | - |
0.8717 | 17300 | 4.9999 | - |
0.8768 | 17400 | 5.0001 | - |
0.8818 | 17500 | 4.9999 | - |
0.8868 | 17600 | 5.0001 | - |
0.8919 | 17700 | 5.0001 | - |
0.8969 | 17800 | 5.0001 | - |
0.9019 | 17900 | 4.9996 | - |
0.9070 | 18000 | 5.0001 | - |
0.9120 | 18100 | 4.9997 | - |
0.9171 | 18200 | 5.0001 | - |
0.9221 | 18300 | 4.9998 | - |
0.9271 | 18400 | 4.9997 | - |
0.9322 | 18500 | 4.9999 | - |
0.9372 | 18600 | 5.0001 | - |
0.9423 | 18700 | 5.0004 | - |
0.9473 | 18800 | 4.9997 | - |
0.9523 | 18900 | 4.9999 | - |
0.9574 | 19000 | 5.0001 | - |
0.9624 | 19100 | 4.9999 | - |
0.9674 | 19200 | 5.0 | - |
0.9725 | 19300 | 4.9999 | - |
0.9775 | 19400 | 4.9999 | - |
0.9826 | 19500 | 4.9999 | - |
0.9876 | 19600 | 4.9998 | - |
0.9926 | 19700 | 5.0 | - |
0.9977 | 19800 | 4.9999 | - |
1.0 | 19846 | - | 0.4905 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}