SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity and stylistic textual similarity (main task). Using an SBERT model for stylistic textual similarity is an experimental usecase but it works really well and I recommend it.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'"Blockchain maakt die data en transacties traceerbaar en openbaar zodat je op elk moment kunt zien wie wat heeft, en waar geld, berichten of documenten vandaan komen."',
'"In de nevelen van de moderne netwerkinfrastructuur onthult de blockchain, een fundamenteel bouwmeesterwerk in cryptografische technologie, haar architectuur die met blokken is opgebouwd tot een transparant systeem waarop de toekomst van elke digitale interactie inzichtelijk is. Deze geavanceerde technologische constructie belooft een ongekende mate van openbaarheid, waardoor gebruikers en betrokkenen in real-time kunnen volgen hoe transacties hun weg vinden door de digitale ruimte."',
'"Om de culinaire excellentie te waarborgen in het licht van de hedendaagse bedrijfsvoering, is er binnen onze organisatie een strategische herziening van ons capaciteitsmodel doorgevoerd, resulterend in een nieuw zakelijk model dat gekoppeld is aan een vermindering van arbeidskrachten en de accentuatie van een exclusievere gastronomische ervaring. Deze reductie tot 50 couverts zal leiden tot een aangepaste dienstverlening die onze toewijding aan hoogwaardige culinaire standaarden reflecteert, doch vergt tevens een herziening van de operationele processen in lijn met deze nieuwe capaciteit."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9022 |
spearman_cosine | 0.8676 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 43,159 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 19 tokens
- mean: 37.07 tokens
- max: 116 tokens
- min: 14 tokens
- mean: 66.53 tokens
- max: 256 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score "Neem zeker het reglement en de voorwaarden nog eens in detail door voor je een premieaanvraag indient."
"Lees zorgvuldig de details van het reglement en de voorwaarden voordat je een premieaanvraag doet."
1.0
"Neem zeker het reglement en de voorwaarden nog eens in detail door voor je een premieaanvraag indient."
"Zorg ervoor dat u de regels en voorwaarden grondig leest alvorens u een premieaanvraag indient."
0.5
"Neem zeker het reglement en de voorwaarden nog eens in detail door voor je een premieaanvraag indient."
"Als een onderdeel van uw verzoek om een gedegen analyse te bieden op premieaanvragen, dient u zich bewust te zijn van de uitdagingen die gepaard gaan met het navigeren door contractuele voorwaarden en reglementen. Deze documenten bevatten vaak meerdere interpretaties en kunnen leiden tot discussies en juridische onzekerheden bij zowel aanvragers als de verstrekkers van de premies.
Uw aandacht dient inderdaad uit te gaan naar de delicate balans tussen klanttevredenheid en compliance met wetgeving, waarbij een onjuiste interpretatie of afwijking ernstige gevolgen kan hebben. Het is raadzaam om deze complexe materie door een juridische expert te laten beoordelen om zeker te zijn van de optimale uitkomsten voor alle betrokken partijen.
Ik, als AI met een breed kennisdomein, kan u helpen bij het verstrekken van informatie over de relevante wetgeving en richtlijnen die van toepassing kunnen zijn op dergelijke premieaanvragen, maar mijn advies is om dergelijke juridische kwesties door een ...0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 7,617 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 19 tokens
- mean: 38.15 tokens
- max: 256 tokens
- min: 11 tokens
- mean: 67.62 tokens
- max: 256 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score "Maar als je ‘wol Antwerpen’ googlede, scoorde mijn winkel niet goed in de resultaten."
"Bij het zoeken naar "wol Antwerpen" via een zoekmachine lijkt het erop dat je winkel niet hoog genoeg in de zoekresultaten verschijnt. (korte, heldere uitleg)"
0.5
"Maar als je ‘wol Antwerpen’ googlede, scoorde mijn winkel niet goed in de resultaten."
"In de grenzen van de digitale wereld, waar informatiejacht een uitdaging blijft die zielen kan verstrengelen met abstracte realiteiten, onthult een speurtocht naar de relatie tussen "Antwerpen" en "wol" – elementen die zowel de historische als mogelijk de natuurlijke staat van de stad belichten – beperkingen in de zoekmachine-algoritmen. Deze wisselwerking, waarbij onze vraag naar verbinding tussen de fysieke 'Antwerpen' en de veelzijdige 'wol', toont een tekortkoming in de herkenning van dergelijke complexe concepten door digitale systemen.
Dat mijn "winkel", die zich onderscheidt binnen het spectrum van commerciële activiteiten, niet prominent aanwezig was in de zoekresultaten van deze zoektocht, suggereert dat er wellicht een mismatch is tussen de verwachtingen en de perceptie door de systemen die onze online zoekverzoeken verwerken. Dit kan leiden tot vragen over hoe deze digitale assistenten ons vinden en plaatsen in relatie tot de realiteit van onze ondernemingen."0.0
"In deze nota introduceert de stad Antwerpen zijn strategie voor de digitale transformatie ."
"Antwerpen presenteert zijn plan voor digitale verandering."
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 3e-05num_train_epochs
: 4fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0.3793 | 256 | - | 5.9158 | 0.8422 |
0.7407 | 500 | 5.9128 | - | - |
0.7585 | 512 | - | 5.6544 | 0.8537 |
1.1378 | 768 | - | 5.9536 | 0.8595 |
1.4815 | 1000 | 5.5698 | - | - |
1.517 | 1024 | - | 5.6527 | 0.8634 |
1.8963 | 1280 | - | 5.6715 | 0.8652 |
2.2222 | 1500 | 5.3868 | - | - |
2.2756 | 1536 | - | 6.0597 | 0.8654 |
2.6548 | 1792 | - | 5.9473 | 0.8664 |
2.9630 | 2000 | 5.0724 | - | - |
3.0341 | 2048 | - | 6.3380 | 0.8682 |
3.4133 | 2304 | - | 6.9139 | 0.8676 |
3.7037 | 2500 | 4.6428 | - | - |
3.7926 | 2560 | - | 6.7426 | 0.8676 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ODeNy/ChecketV2
Dataset used to train ODeNy/ChecketV2
Evaluation results
- Pearson Cosine on Unknownself-reported0.902
- Spearman Cosine on Unknownself-reported0.868