|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
language: |
|
- yue |
|
metrics: |
|
- cer |
|
library_name: transformers |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<p align="left"> |
|
🤗 <a href="https://huggingface.co/Oblivion208" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/fengredrum/finetune-whisper-lora" target="_blank">Github Repo</a> |
|
</p> |
|
|
|
## Usage |
|
```python |
|
import torch |
|
import librosa |
|
from transformers import WhisperProcessor, WhisperTokenizer, WhisperForConditionalGeneration |
|
|
|
# Setups |
|
model_name_or_path = "Oblivion208/whisper-tiny-cantonese" |
|
task = "transcribe" |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
model = WhisperForConditionalGeneration.from_pretrained(model_name_or_path).to(device) |
|
tokenizer = WhisperTokenizer.from_pretrained(model_name_or_path, task=task) |
|
processor = WhisperProcessor.from_pretrained(model_name_or_path, task=task) |
|
feature_extractor = processor.feature_extractor |
|
model.config.forced_decoder_ids = None |
|
model.config.suppress_tokens = [] |
|
|
|
filepath = 'test.wav' |
|
audio, sr = librosa.load(filepath, sr=16000, mono=True) |
|
inputs = processor(audio, sample_rate=sr, return_tensors="pt").to(device) |
|
|
|
with torch.inference_mode(): |
|
generated_tokens = model.generate( |
|
input_features=inputs.input_features, |
|
return_dict_in_generate=True, |
|
max_new_tokens=255, |
|
) |
|
transcription = tokenizer.batch_decode( |
|
generated_tokens.sequences, skip_special_tokens=True) |
|
print(transcription) |
|
``` |
|
|
|
## Approximate Performance Evaluation |
|
|
|
The following models are all trained and evaluated on a single RTX 3090 GPU. |
|
|
|
### Cantonese Test Results Comparison |
|
|
|
#### MDCC |
|
|
|
| Model name | Parameters | Finetune Steps | Time Spend | Training Loss | Validation Loss | CER % | Finetuned Model | |
|
| ------------------------------- | ---------- | -------------- | ---------- | ------------- | --------------- | ----- | ------------------------------------------------------------------------------------------------------------------------ | |
|
| whisper-tiny-cantonese | 39 M | 3200 | 4h 34m | 0.0485 | 0.771 | 11.10 | [Link](https://huggingface.co/Oblivion208/whisper-tiny-cantonese "Oblivion208/whisper-tiny-cantonese") | |
|
| whisper-base-cantonese | 74 M | 7200 | 13h 32m | 0.0186 | 0.477 | 7.66 | [Link](https://huggingface.co/Oblivion208/whisper-base-cantonese "Oblivion208/whisper-base-cantonese") | |
|
| whisper-small-cantonese | 244 M | 3600 | 6h 38m | 0.0266 | 0.137 | 6.16 | [Link](https://huggingface.co/Oblivion208/whisper-small-cantonese "Oblivion208/whisper-small-cantonese") | |
|
| whisper-small-lora-cantonese | 3.5 M | 8000 | 21h 27m | 0.0687 | 0.382 | 7.40 | [Link](https://huggingface.co/Oblivion208/whisper-small-lora-cantonese "Oblivion208/whisper-small-lora-cantonese") | |
|
| whisper-large-v2-lora-cantonese | 15 M | 10000 | 33h 40m | 0.0046 | 0.277 | 3.77 | [Link](https://huggingface.co/Oblivion208/whisper-large-v2-lora-cantonese "Oblivion208/whisper-large-v2-lora-cantonese") | |
|
|
|
#### Common Voice Corpus 11.0 |
|
|
|
| Model name | Original CER % | w/o Finetune CER % | Jointly Finetune CER % | |
|
| ------------------------------- | -------------- | ------------------ | ---------------------- | |
|
| whisper-tiny-cantonese | 124.03 | 66.85 | 35.87 | |
|
| whisper-base-cantonese | 78.24 | 61.42 | 16.73 | |
|
| whisper-small-cantonese | 52.83 | 31.23 | / | |
|
| whisper-small-lora-cantonese | 37.53 | 19.38 | 14.73 | |
|
| whisper-large-v2-lora-cantonese | 37.53 | 19.38 | 9.63 | |
|
|