|
--- |
|
license: apache-2.0 |
|
language: |
|
- ar |
|
pipeline_tag: text-classification |
|
tags: |
|
- transformers |
|
- sentence-transformers |
|
- text-embeddings-inference |
|
--- |
|
|
|
# Introducing ARM-V1 | Arabic Reranker Model (Version 1) |
|
|
|
**For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).** |
|
|
|
✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision. |
|
|
|
✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score. |
|
|
|
✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results. |
|
|
|
✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance. |
|
|
|
## Arabic RAG Pipeline |
|
|
|
|
|
![Arabic RAG Pipeline](https://i.ibb.co/z4Fc3Kd/Screenshot-2024-11-28-at-10-17-39-AM.png) |
|
|
|
|
|
|
|
## Usage |
|
### Using sentence-transformers |
|
|
|
``` |
|
pip install sentence-transformers |
|
``` |
|
```python |
|
from sentence_transformers import CrossEncoder |
|
|
|
# Load the cross-encoder model |
|
|
|
# Define a query and a set of candidates with varying degrees of relevance |
|
query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة." |
|
|
|
# Candidates with varying relevance to the query |
|
candidates = [ |
|
"الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant |
|
"نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant |
|
"الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant |
|
"تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant |
|
] |
|
|
|
# Create pairs of (query, candidate) for each candidate |
|
query_candidate_pairs = [(query, candidate) for candidate in candidates] |
|
|
|
# Get relevance scores from the model |
|
scores = model.predict(query_candidate_pairs) |
|
|
|
# Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance) |
|
ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True) |
|
|
|
# Output the ranked candidates with their scores |
|
print("Ranked candidates based on relevance to the query:") |
|
for i, (candidate, score) in enumerate(ranked_candidates, 1): |
|
print(f"Rank {i}:") |
|
print(f"Candidate: {candidate}") |
|
print(f"Score: {score}\n") |
|
``` |
|
## Evaluation |
|
### Dataset |
|
|
|
Size: 3000 samples. |
|
|
|
### Structure: |
|
🔸 Query: A string representing the user's question. |
|
|
|
🔸 Candidate Document: A candidate passage to answer the query. |
|
|
|
🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant). |
|
|
|
### Evaluation Process |
|
|
|
🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query. |
|
|
|
🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query. |
|
|
|
🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones. |
|
|
|
| Model | MRR | MAP | nDCG@10 | |
|
|-------------------------------------------|------------------|------------------|------------------| |
|
| cross-encoder/ms-marco-MiniLM-L-6-v2 | 0.6313333333333334 | 0.6313333333333334 | 0.725444959171438 | |
|
| cross-encoder/ms-marco-MiniLM-L-12-v2 | 0.6643333333333332 | 0.6643333333333332 | 0.7500407855785803 | |
|
| BAAI/bge-reranker-v2-m3 | 0.9023333333333332 | 0.9023333333333332 | 0.9274971489500038 | |
|
| Omartificial-Intelligence-Space/ARA-Reranker-V1 | 0.9335 | 0.9335 | 0.9507001860964314 | |
|
|
|
|
|
|
|
## <span style="color:blue">Acknowledgments</span> |
|
|
|
The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models. |
|
|
|
|
|
```markdown |
|
## Citation |
|
|
|
If you use the GATE, please cite it as follows: |
|
|
|
@misc{nacar2025ARM, |
|
title={ARM, Arabic Reranker Model}, |
|
author={Omer Nacar}, |
|
year={2025}, |
|
url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1}, |
|
} |
|
|
|
|
|
|
|
|
|
|