|
--- |
|
language: |
|
- ar |
|
library_name: sentence-transformers |
|
tags: |
|
- mteb |
|
- transformers |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
model-index: |
|
- name: Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka |
|
results: |
|
- dataset: |
|
config: ar |
|
name: MTEB MIRACLRetrievalHardNegatives (ar) |
|
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb |
|
split: dev |
|
type: miracl/mmteb-miracl-hardnegatives |
|
metrics: |
|
- type: main_score |
|
value: 22.583 |
|
- type: map_at_1 |
|
value: 8.211 |
|
- type: map_at_3 |
|
value: 12.913 |
|
- type: map_at_5 |
|
value: 14.622 |
|
- type: map_at_10 |
|
value: 16.315 |
|
- type: ndcg_at_1 |
|
value: 12.5 |
|
- type: ndcg_at_3 |
|
value: 16.058 |
|
- type: ndcg_at_5 |
|
value: 18.833 |
|
- type: ndcg_at_10 |
|
value: 22.583 |
|
- type: recall_at_1 |
|
value: 8.211 |
|
- type: recall_at_3 |
|
value: 18.474 |
|
- type: recall_at_5 |
|
value: 24.969 |
|
- type: recall_at_10 |
|
value: 34.894 |
|
- type: precision_at_1 |
|
value: 12.5 |
|
- type: precision_at_3 |
|
value: 9.7 |
|
- type: precision_at_5 |
|
value: 8.24 |
|
- type: precision_at_10 |
|
value: 6.07 |
|
- type: mrr_at_1 |
|
value: 12.5 |
|
- type: mrr_at_3 |
|
value: 18.5333 |
|
- type: mrr_at_5 |
|
value: 20.5983 |
|
- type: mrr_at_10 |
|
value: 22.165 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ar |
|
name: MTEB MintakaRetrieval (ar) |
|
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e |
|
split: test |
|
type: mintaka/mmteb-mintaka |
|
metrics: |
|
- type: main_score |
|
value: 18.23 |
|
- type: map_at_1 |
|
value: 9.941 |
|
- type: map_at_3 |
|
value: 13.277 |
|
- type: map_at_5 |
|
value: 14.33 |
|
- type: map_at_10 |
|
value: 15.12 |
|
- type: ndcg_at_1 |
|
value: 9.941 |
|
- type: ndcg_at_3 |
|
value: 14.41 |
|
- type: ndcg_at_5 |
|
value: 16.303 |
|
- type: ndcg_at_10 |
|
value: 18.23 |
|
- type: recall_at_1 |
|
value: 9.941 |
|
- type: recall_at_3 |
|
value: 17.703 |
|
- type: recall_at_5 |
|
value: 22.288 |
|
- type: recall_at_10 |
|
value: 28.28 |
|
- type: precision_at_1 |
|
value: 9.941 |
|
- type: precision_at_3 |
|
value: 5.901 |
|
- type: precision_at_5 |
|
value: 4.458 |
|
- type: precision_at_10 |
|
value: 2.828 |
|
- type: mrr_at_1 |
|
value: 9.941 |
|
- type: mrr_at_3 |
|
value: 13.2773 |
|
- type: mrr_at_5 |
|
value: 14.3305 |
|
- type: mrr_at_10 |
|
value: 15.1196 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ar |
|
name: MTEB MLQARetrieval (ar) |
|
revision: 397ed406c1a7902140303e7faf60fff35b58d285 |
|
split: validation |
|
type: mlqa/mmteb-mlqa |
|
metrics: |
|
- type: main_score |
|
value: 65.234 |
|
- type: map_at_1 |
|
value: 50.29 |
|
- type: map_at_3 |
|
value: 58.317 |
|
- type: map_at_5 |
|
value: 59.487 |
|
- type: map_at_10 |
|
value: 60.37 |
|
- type: ndcg_at_1 |
|
value: 50.29 |
|
- type: ndcg_at_3 |
|
value: 60.972 |
|
- type: ndcg_at_5 |
|
value: 63.102 |
|
- type: ndcg_at_10 |
|
value: 65.234 |
|
- type: recall_at_1 |
|
value: 50.29 |
|
- type: recall_at_3 |
|
value: 68.665 |
|
- type: recall_at_5 |
|
value: 73.888 |
|
- type: recall_at_10 |
|
value: 80.464 |
|
- type: precision_at_1 |
|
value: 50.29 |
|
- type: precision_at_3 |
|
value: 22.888 |
|
- type: precision_at_5 |
|
value: 14.778 |
|
- type: precision_at_10 |
|
value: 8.046 |
|
- type: mrr_at_1 |
|
value: 50.2901 |
|
- type: mrr_at_3 |
|
value: 58.3172 |
|
- type: mrr_at_5 |
|
value: 59.4874 |
|
- type: mrr_at_10 |
|
value: 60.3699 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SadeemQuestionRetrieval (ar) |
|
revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9 |
|
split: test |
|
type: sadeem/mmteb-sadeem |
|
metrics: |
|
- type: main_score |
|
value: 62.241 |
|
- type: map_at_1 |
|
value: 28.147 |
|
- type: map_at_3 |
|
value: 50.989 |
|
- type: map_at_5 |
|
value: 52.059 |
|
- type: map_at_10 |
|
value: 52.553 |
|
- type: ndcg_at_1 |
|
value: 28.147 |
|
- type: ndcg_at_3 |
|
value: 59.156 |
|
- type: ndcg_at_5 |
|
value: 61.066 |
|
- type: ndcg_at_10 |
|
value: 62.241 |
|
- type: recall_at_1 |
|
value: 28.147 |
|
- type: recall_at_3 |
|
value: 83.006 |
|
- type: recall_at_5 |
|
value: 87.602 |
|
- type: recall_at_10 |
|
value: 91.192 |
|
- type: precision_at_1 |
|
value: 28.147 |
|
- type: precision_at_3 |
|
value: 27.669 |
|
- type: precision_at_5 |
|
value: 17.52 |
|
- type: precision_at_10 |
|
value: 9.119 |
|
- type: mrr_at_1 |
|
value: 26.9507 |
|
- type: mrr_at_3 |
|
value: 50.1675 |
|
- type: mrr_at_5 |
|
value: 51.2207 |
|
- type: mrr_at_10 |
|
value: 51.7396 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB BIOSSES (default) |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
split: test |
|
type: mteb/biosses-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 67.88078975738149 |
|
- type: cosine_spearman |
|
value: 67.36900492799694 |
|
- type: euclidean_pearson |
|
value: 66.00402957388015 |
|
- type: euclidean_spearman |
|
value: 65.70270189991112 |
|
- type: main_score |
|
value: 67.36900492799694 |
|
- type: manhattan_pearson |
|
value: 66.54937895501651 |
|
- type: manhattan_spearman |
|
value: 66.12198856207587 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-R (default) |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
split: test |
|
type: mteb/sickr-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 62.931439439697044 |
|
- type: cosine_spearman |
|
value: 57.64441663261227 |
|
- type: euclidean_pearson |
|
value: 61.119408834167835 |
|
- type: euclidean_spearman |
|
value: 57.42332323654558 |
|
- type: main_score |
|
value: 57.64441663261227 |
|
- type: manhattan_pearson |
|
value: 60.692516462749204 |
|
- type: manhattan_spearman |
|
value: 56.99349446063643 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS12 (default) |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
split: test |
|
type: mteb/sts12-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 70.42631404785132 |
|
- type: cosine_spearman |
|
value: 69.67060431422327 |
|
- type: euclidean_pearson |
|
value: 68.70261457119209 |
|
- type: euclidean_spearman |
|
value: 68.99597672902992 |
|
- type: main_score |
|
value: 69.67060431422327 |
|
- type: manhattan_pearson |
|
value: 67.99048393745159 |
|
- type: manhattan_spearman |
|
value: 68.1853179140009 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS13 (default) |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
split: test |
|
type: mteb/sts13-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 49.46916157874787 |
|
- type: cosine_spearman |
|
value: 51.95037157769884 |
|
- type: euclidean_pearson |
|
value: 55.17336596392549 |
|
- type: euclidean_spearman |
|
value: 54.312304378478835 |
|
- type: main_score |
|
value: 51.95037157769884 |
|
- type: manhattan_pearson |
|
value: 55.09060773902408 |
|
- type: manhattan_spearman |
|
value: 53.96813218977611 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS14 (default) |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
split: test |
|
type: mteb/sts14-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 54.37699141667456 |
|
- type: cosine_spearman |
|
value: 57.36607721958864 |
|
- type: euclidean_pearson |
|
value: 57.98000825695592 |
|
- type: euclidean_spearman |
|
value: 59.08844527739818 |
|
- type: main_score |
|
value: 57.36607721958864 |
|
- type: manhattan_pearson |
|
value: 57.588062173142106 |
|
- type: manhattan_spearman |
|
value: 58.35590953779109 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS15 (default) |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
split: test |
|
type: mteb/sts15-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 67.37948361289261 |
|
- type: cosine_spearman |
|
value: 70.0994395240558 |
|
- type: euclidean_pearson |
|
value: 70.28341277052768 |
|
- type: euclidean_spearman |
|
value: 70.11050982217422 |
|
- type: main_score |
|
value: 70.0994395240558 |
|
- type: manhattan_pearson |
|
value: 70.66000566140171 |
|
- type: manhattan_spearman |
|
value: 70.41742785288693 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS16 (default) |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
split: test |
|
type: mteb/sts16-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 61.559501698409434 |
|
- type: cosine_spearman |
|
value: 65.04903130808405 |
|
- type: euclidean_pearson |
|
value: 63.92021058086694 |
|
- type: euclidean_spearman |
|
value: 64.22673046991633 |
|
- type: main_score |
|
value: 65.04903130808405 |
|
- type: manhattan_pearson |
|
value: 63.958100692077956 |
|
- type: manhattan_spearman |
|
value: 64.15057001708075 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 (ar-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 82.35377320218275 |
|
- type: cosine_spearman |
|
value: 83.15514468203664 |
|
- type: euclidean_pearson |
|
value: 80.56116685008965 |
|
- type: euclidean_spearman |
|
value: 82.38252301503367 |
|
- type: main_score |
|
value: 83.15514468203664 |
|
- type: manhattan_pearson |
|
value: 80.74794586574093 |
|
- type: manhattan_spearman |
|
value: 82.54224799581789 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar |
|
name: MTEB STS22 (ar) |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 48.22154847597003 |
|
- type: cosine_spearman |
|
value: 58.29235719729918 |
|
- type: euclidean_pearson |
|
value: 51.54481297728728 |
|
- type: euclidean_spearman |
|
value: 58.990627664376674 |
|
- type: main_score |
|
value: 58.29235719729918 |
|
- type: manhattan_pearson |
|
value: 52.195039627338126 |
|
- type: manhattan_spearman |
|
value: 59.12018922641005 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSBenchmark (default) |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
split: test |
|
type: mteb/stsbenchmark-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 59.50286436994106 |
|
- type: cosine_spearman |
|
value: 61.592426810014366 |
|
- type: euclidean_pearson |
|
value: 63.268627193788916 |
|
- type: euclidean_spearman |
|
value: 63.16239630067321 |
|
- type: main_score |
|
value: 61.592426810014366 |
|
- type: manhattan_pearson |
|
value: 62.95949714767757 |
|
- type: manhattan_spearman |
|
value: 62.687737378385364 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SummEval (default) |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
split: test |
|
type: mteb/summeval |
|
metrics: |
|
- type: cosine_pearson |
|
value: 31.1427099547469 |
|
- type: cosine_spearman |
|
value: 31.32880594576111 |
|
- type: dot_pearson |
|
value: 25.98395652985614 |
|
- type: dot_spearman |
|
value: 25.30831374828529 |
|
- type: main_score |
|
value: 31.32880594576111 |
|
- type: pearson |
|
value: 31.1427099547469 |
|
- type: spearman |
|
value: 31.32880594576111 |
|
task: |
|
type: Summarization |
|
- name: SentenceTransformer based on aubmindlab/bert-base-arabertv02 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5949906740977448 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6159750250469712 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6295622269205102 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6269654283099967 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6326526932327604 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6317081341785673 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.42816790752358297 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4295282086669423 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6326526932327604 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6317081341785673 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5846223235167534 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6064092420664184 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6287774004727389 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6263546541183983 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.631267664308041 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6301778108727977 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.3788565672017437 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.37680551461721923 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.631267664308041 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6301778108727977 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5778623383989389 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5959667709300495 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6242980982402613 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6217473192873829 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6237908608463304 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6215304658549996 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.35968442092444003 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.35304547874806785 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6242980982402613 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6217473192873829 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5830782075122916 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6022044167653756 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6151866925343435 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6121950064533626 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6162225316000448 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.615301209345362 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.40438461342780957 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.40153111017443666 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6162225316000448 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.615301209345362 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5724838823862283 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5914127847098 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6023812283389073 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.5967205030284914 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6069294574719372 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6041440553344074 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.36315938245739166 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.358512645020771 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6069294574719372 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6041440553344074 |
|
name: Spearman Max |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
datasets: |
|
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة |
|
sentences: |
|
- رجل يقدم عرضاً |
|
- هناك رجل بالخارج قرب الشاطئ |
|
- رجل يجلس على أريكه |
|
- source_sentence: رجل يقفز إلى سريره القذر |
|
sentences: |
|
- السرير قذر. |
|
- رجل يضحك أثناء غسيل الملابس |
|
- الرجل على القمر |
|
- source_sentence: الفتيات بالخارج |
|
sentences: |
|
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات |
|
- فتيان يركبان في جولة متعة |
|
- >- |
|
ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة |
|
تتحدث إليهن |
|
- source_sentence: الرجل يرتدي قميصاً أزرق. |
|
sentences: |
|
- >- |
|
رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة |
|
حمراء مع الماء في الخلفية. |
|
- كتاب القصص مفتوح |
|
- رجل يرتدي قميص أسود يعزف على الجيتار. |
|
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة. |
|
sentences: |
|
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه |
|
- رجل يستلقي على وجهه على مقعد في الحديقة. |
|
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة |
|
pipeline_tag: sentence-similarity |
|
license: apache-2.0 |
|
--- |
|
|
|
# Arabert All NLI Triplet Matryoshka Model |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-arabert-all-nli-triplet") |
|
# Run inference |
|
sentences = [ |
|
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', |
|
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', |
|
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.595 | |
|
| **spearman_cosine** | **0.616** | |
|
| pearson_manhattan | 0.6296 | |
|
| spearman_manhattan | 0.627 | |
|
| pearson_euclidean | 0.6327 | |
|
| spearman_euclidean | 0.6317 | |
|
| pearson_dot | 0.4282 | |
|
| spearman_dot | 0.4295 | |
|
| pearson_max | 0.6327 | |
|
| spearman_max | 0.6317 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5846 | |
|
| **spearman_cosine** | **0.6064** | |
|
| pearson_manhattan | 0.6288 | |
|
| spearman_manhattan | 0.6264 | |
|
| pearson_euclidean | 0.6313 | |
|
| spearman_euclidean | 0.6302 | |
|
| pearson_dot | 0.3789 | |
|
| spearman_dot | 0.3768 | |
|
| pearson_max | 0.6313 | |
|
| spearman_max | 0.6302 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.5779 | |
|
| **spearman_cosine** | **0.596** | |
|
| pearson_manhattan | 0.6243 | |
|
| spearman_manhattan | 0.6217 | |
|
| pearson_euclidean | 0.6238 | |
|
| spearman_euclidean | 0.6215 | |
|
| pearson_dot | 0.3597 | |
|
| spearman_dot | 0.353 | |
|
| pearson_max | 0.6243 | |
|
| spearman_max | 0.6217 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5831 | |
|
| **spearman_cosine** | **0.6022** | |
|
| pearson_manhattan | 0.6152 | |
|
| spearman_manhattan | 0.6122 | |
|
| pearson_euclidean | 0.6162 | |
|
| spearman_euclidean | 0.6153 | |
|
| pearson_dot | 0.4044 | |
|
| spearman_dot | 0.4015 | |
|
| pearson_max | 0.6162 | |
|
| spearman_max | 0.6153 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5725 | |
|
| **spearman_cosine** | **0.5914** | |
|
| pearson_manhattan | 0.6024 | |
|
| spearman_manhattan | 0.5967 | |
|
| pearson_euclidean | 0.6069 | |
|
| spearman_euclidean | 0.6041 | |
|
| pearson_dot | 0.3632 | |
|
| spearman_dot | 0.3585 | |
|
| pearson_max | 0.6069 | |
|
| spearman_max | 0.6041 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 8.02 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.03 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.72 tokens</li><li>max: 38 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 14.87 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.54 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.14 tokens</li><li>max: 23 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0229 | 200 | 14.4811 | - | - | - | - | - | |
|
| 0.0459 | 400 | 9.0389 | - | - | - | - | - | |
|
| 0.0688 | 600 | 8.1478 | - | - | - | - | - | |
|
| 0.0918 | 800 | 7.168 | - | - | - | - | - | |
|
| 0.1147 | 1000 | 7.1998 | - | - | - | - | - | |
|
| 0.1377 | 1200 | 6.7985 | - | - | - | - | - | |
|
| 0.1606 | 1400 | 6.3754 | - | - | - | - | - | |
|
| 0.1835 | 1600 | 6.3202 | - | - | - | - | - | |
|
| 0.2065 | 1800 | 5.9186 | - | - | - | - | - | |
|
| 0.2294 | 2000 | 5.9594 | - | - | - | - | - | |
|
| 0.2524 | 2200 | 6.0211 | - | - | - | - | - | |
|
| 0.2753 | 2400 | 5.9984 | - | - | - | - | - | |
|
| 0.2983 | 2600 | 5.8321 | - | - | - | - | - | |
|
| 0.3212 | 2800 | 5.621 | - | - | - | - | - | |
|
| 0.3442 | 3000 | 5.9004 | - | - | - | - | - | |
|
| 0.3671 | 3200 | 5.562 | - | - | - | - | - | |
|
| 0.3900 | 3400 | 5.5125 | - | - | - | - | - | |
|
| 0.4130 | 3600 | 5.4922 | - | - | - | - | - | |
|
| 0.4359 | 3800 | 5.3023 | - | - | - | - | - | |
|
| 0.4589 | 4000 | 5.4376 | - | - | - | - | - | |
|
| 0.4818 | 4200 | 5.1048 | - | - | - | - | - | |
|
| 0.5048 | 4400 | 5.0605 | - | - | - | - | - | |
|
| 0.5277 | 4600 | 4.9985 | - | - | - | - | - | |
|
| 0.5506 | 4800 | 5.2594 | - | - | - | - | - | |
|
| 0.5736 | 5000 | 5.2183 | - | - | - | - | - | |
|
| 0.5965 | 5200 | 5.1621 | - | - | - | - | - | |
|
| 0.6195 | 5400 | 5.166 | - | - | - | - | - | |
|
| 0.6424 | 5600 | 5.2241 | - | - | - | - | - | |
|
| 0.6654 | 5800 | 5.1342 | - | - | - | - | - | |
|
| 0.6883 | 6000 | 5.2267 | - | - | - | - | - | |
|
| 0.7113 | 6200 | 5.1083 | - | - | - | - | - | |
|
| 0.7342 | 6400 | 5.0119 | - | - | - | - | - | |
|
| 0.7571 | 6600 | 4.6471 | - | - | - | - | - | |
|
| 0.7801 | 6800 | 3.6699 | - | - | - | - | - | |
|
| 0.8030 | 7000 | 3.2954 | - | - | - | - | - | |
|
| 0.8260 | 7200 | 3.1039 | - | - | - | - | - | |
|
| 0.8489 | 7400 | 3.001 | - | - | - | - | - | |
|
| 0.8719 | 7600 | 2.8992 | - | - | - | - | - | |
|
| 0.8948 | 7800 | 2.7504 | - | - | - | - | - | |
|
| 0.9177 | 8000 | 2.7891 | - | - | - | - | - | |
|
| 0.9407 | 8200 | 2.7157 | - | - | - | - | - | |
|
| 0.9636 | 8400 | 2.6795 | - | - | - | - | - | |
|
| 0.9866 | 8600 | 2.6278 | - | - | - | - | - | |
|
| 1.0 | 8717 | - | 0.6022 | 0.5960 | 0.6064 | 0.5914 | 0.6160 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## <span style="color:blue">Acknowledgments</span> |
|
|
|
The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models. |
|
|
|
|
|
```markdown |
|
## Citation |
|
|
|
If you use the Arabic Matryoshka Embeddings Model, please cite it as follows: |
|
|
|
@misc{nacar2024enhancingsemanticsimilarityunderstanding, |
|
title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, |
|
author={Omer Nacar and Anis Koubaa}, |
|
year={2024}, |
|
eprint={2407.21139}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2407.21139}, |
|
} |