File size: 10,324 Bytes
919f7cc cc1edd3 919f7cc 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 54ee03e 88cb56b 919f7cc ab2ed1f 919f7cc ab2ed1f 919f7cc ab2ed1f 919f7cc ab2ed1f 919f7cc ab2ed1f 919f7cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
---
base_model: Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka
datasets:
- Omartificial-Intelligence-Space/Arabic-stsb
language:
- ar
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:947818
- loss:SoftmaxLoss
- loss:CosineSimilarityLoss
widget:
- source_sentence: امرأة تكتب شيئاً
sentences:
- مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
- امرأة تقطع البصل الأخضر.
- مجموعة من كبار السن يتظاهرون حول طاولة الطعام.
- source_sentence: تتشكل النجوم في مناطق تكوين النجوم، والتي تنشأ نفسها من السحب الجزيئية.
sentences:
- لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
- المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
- source_sentence: تحت السماء الزرقاء مع الغيوم البيضاء، يصل طفل لمس مروحة طائرة واقفة
على حقل من العشب.
sentences:
- امرأة تحمل كأساً
- طفل يحاول لمس مروحة طائرة
- اثنان من عازبين عن الشرب يستعدون للعشاء
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا
تبدو كحمام
sentences:
- فتى يخطط اسمه على مكتبه
- رجل ينام
- المرأة وحدها وهي نائمة في غرفة نومها
- source_sentence: الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.
sentences:
- شخص طويل القامة
- المرأة تنظر من النافذة.
- لقد مات الكلب
model-index:
- name: Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka
results:
- dataset:
config: ar
name: MTEB MintakaRetrieval (ar)
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
split: test
type: mintaka/mmteb-mintaka
metrics:
- type: main_score
value: 17.121
- type: map_at_1
value: 9.805
- type: map_at_3
value: 12.574
- type: map_at_5
value: 13.468
- type: map_at_10
value: 14.294
- type: ndcg_at_1
value: 9.805
- type: ndcg_at_3
value: 13.504
- type: ndcg_at_5
value: 15.114
- type: ndcg_at_10
value: 17.121
- type: recall_at_1
value: 9.805
- type: recall_at_3
value: 16.205
- type: recall_at_5
value: 20.109
- type: recall_at_10
value: 26.328
- type: precision_at_1
value: 9.805
- type: precision_at_3
value: 5.402
- type: precision_at_5
value: 4.022
- type: precision_at_10
value: 2.633
- type: mrr_at_1
value: 9.8048
- type: mrr_at_3
value: 12.5738
- type: mrr_at_5
value: 13.468
- type: mrr_at_10
value: 14.2936
task:
type: Retrieval
- dataset:
config: ar
name: MTEB MIRACLRetrievalHardNegatives (ar)
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
split: dev
type: miracl/mmteb-miracl-hardnegatives
metrics:
- type: main_score
value: 17.751
- type: map_at_1
value: 6.057
- type: map_at_3
value: 9.526
- type: map_at_5
value: 10.812
- type: map_at_10
value: 12.51
- type: ndcg_at_1
value: 8.9
- type: ndcg_at_3
value: 11.773
- type: ndcg_at_5
value: 13.94
- type: ndcg_at_10
value: 17.751
- type: recall_at_1
value: 6.057
- type: recall_at_3
value: 13.244
- type: recall_at_5
value: 18.536
- type: recall_at_10
value: 28.793
- type: precision_at_1
value: 8.9
- type: precision_at_3
value: 7.1
- type: precision_at_5
value: 6.02
- type: precision_at_10
value: 4.84
- type: mrr_at_1
value: 8.9
- type: mrr_at_3
value: 13.5833
- type: mrr_at_5
value: 15.2683
- type: mrr_at_10
value: 16.9415
task:
type: Retrieval
- dataset:
config: ar
name: MTEB MLQARetrieval (ar)
revision: 397ed406c1a7902140303e7faf60fff35b58d285
split: validation
type: mlqa/mmteb-mlqa
metrics:
- type: main_score
value: 58.026
- type: map_at_1
value: 42.553
- type: map_at_3
value: 50.709
- type: map_at_5
value: 51.899
- type: map_at_10
value: 52.972
- type: ndcg_at_1
value: 42.553
- type: ndcg_at_3
value: 53.336
- type: ndcg_at_5
value: 55.484
- type: ndcg_at_10
value: 58.026
- type: recall_at_1
value: 42.553
- type: recall_at_3
value: 60.928
- type: recall_at_5
value: 66.151
- type: recall_at_10
value: 73.888
- type: precision_at_1
value: 42.553
- type: precision_at_3
value: 20.309
- type: precision_at_5
value: 13.23
- type: precision_at_10
value: 7.389
- type: mrr_at_1
value: 42.5532
- type: mrr_at_3
value: 50.7092
- type: mrr_at_5
value: 51.8988
- type: mrr_at_10
value: 52.9717
task:
type: Retrieval
- dataset:
config: default
name: MTEB SadeemQuestionRetrieval (ar)
revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9
split: test
type: sadeem/mmteb-sadeem
metrics:
- type: main_score
value: 59.306
- type: map_at_1
value: 25.945
- type: map_at_3
value: 47.766
- type: map_at_5
value: 48.994
- type: map_at_10
value: 49.675
- type: ndcg_at_1
value: 25.945
- type: ndcg_at_3
value: 55.479
- type: ndcg_at_5
value: 57.679
- type: ndcg_at_10
value: 59.306
- type: recall_at_1
value: 25.945
- type: recall_at_3
value: 77.98
- type: recall_at_5
value: 83.293
- type: recall_at_10
value: 88.272
- type: precision_at_1
value: 25.945
- type: precision_at_3
value: 25.993
- type: precision_at_5
value: 16.659
- type: precision_at_10
value: 8.827
- type: mrr_at_1
value: 24.988
- type: mrr_at_3
value: 47.056
- type: mrr_at_5
value: 48.2671
- type: mrr_at_10
value: 48.9239
task:
type: Retrieval
---
# GATE-AraBert-v0
This is a General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) <!-- at revision 5ce4f80f3ede26de623d6ac10681399dba5c684a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [all-nli](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class)
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
- **Language:** ar
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v0")
# Run inference
sentences = [
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
'لقد مات الكلب',
'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8384 |
| **spearman_cosine** | **0.8389** |
| pearson_manhattan | 0.8248 |
| spearman_manhattan | 0.8329 |
| pearson_euclidean | 0.825 |
| spearman_euclidean | 0.8337 |
| pearson_dot | 0.8072 |
| spearman_dot | 0.8098 |
| pearson_max | 0.8384 |
| spearman_max | 0.8389 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7908 |
| **spearman_cosine** | **0.7893** |
| pearson_manhattan | 0.7923 |
| spearman_manhattan | 0.7947 |
| pearson_euclidean | 0.7904 |
| spearman_euclidean | 0.7934 |
| pearson_dot | 0.7404 |
| spearman_dot | 0.7354 |
| pearson_max | 0.7923 |
| spearman_max | 0.7947 |
|