StoryFusion-7B / README.md
OmnicromsBrain's picture
Update README.md
459075a verified
|
raw
history blame
1.92 kB
metadata
tags:
  - merge
  - mergekit
  - kasper52786/StoryWeaver-7b-Instruct-v0.1
  - N8Programs/Coxcomb
  - Norquinal/Mistral-7B-storywriter
base_model:
  - kasper52786/StoryWeaver-7b-Instruct-v0.1
  - N8Programs/Coxcomb
  - Norquinal/Mistral-7B-storywriter

StoryFusion-7B

StoryFusion-7B is a merge of the following models:

⚡ Quantized Models

Thanks to MRadermacher for the quantized models

.GGUF https://huggingface.co/mradermacher/StoryFusion-7B-GGUF

🧩 Configuration

models:
  - model: senseable/WestLake-7B-v2
    # No parameters necessary for base model
  - model: kasper52786/StoryWeaver-7b-Instruct-v0.1
    parameters:
      density: 0.53
      weight: 0.4
  - model: N8Programs/Coxcomb
    parameters:
      density: 0.53
      weight: 0.3
  - model: Norquinal/Mistral-7B-storywriter
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
  int8_mask: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "OmnicromsBrain/StoryFusion-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])