File size: 6,654 Bytes
da95d72 c38a7fe da95d72 c38a7fe 06d367c c38a7fe 55f3e9c c38a7fe f564018 c38a7fe 62f8dfb c38a7fe 162cb94 c90699f f564018 c38a7fe b74c3eb c38a7fe 2914b34 869e5e3 d1a7f0a 5918d23 2743f6b c38a7fe d1a7f0a c38a7fe da92483 b46dbcf da92483 9d90772 e2a1dc7 d9e35a3 e2a1dc7 dbb225e b880378 e2a1dc7 dbb225e e2a1dc7 dbb225e e2a1dc7 c38a7fe 06d367c c38a7fe 614f6b8 c38a7fe ef3aa9f c38a7fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
---
# Model Card for InternVL-Chat-Chinese-V1.1
## What is InternVL?
\[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\]
InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/4SynvLt2qH8JXFQVI_fmv.png)
## Model Details
- **Model Type:** multimodal chatbot
- **Model Stats:**
- Architecture: InternViT-6B + MLP + LLaMA2-13B
- Params: 19B
- Image size: 448 x 448
- Number of visual tokens: 256
- **Training Strategy:**
- Pretraining Stage
- Learnable Component: InternViT-6B + MLP
- Data: Trained on 72M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data.
- Note: In this stage, we load the pretrained weights of InternViT-6B-224px and interpolate its position embedding to the size corresponding to 448 x 448 pixels. Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
- SFT Stage
- Learnable Component: MLP + LLM
- Data: A comprehensive collection of open-source SFT datasets, along with their Chinese translation versions, totaling approximately 6M samples.
## Model Usage
We provide a minimum code example to run InternVL-Chat using only the `transformers` library.
You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
Note: If you meet this error `ImportError: This modeling file requires the following packages that were not found in your environment: fastchat`, please run `pip install fschat`.
```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer
path = "OpenGVLab/InternVL-Chat-Chinese-V1-1"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map='auto').eval()
tokenizer = AutoTokenizer.from_pretrained(path)
image = Image.open('./examples/image2.jpg').convert('RGB')
image = image.resize((448, 448))
image_processor = CLIPImageProcessor.from_pretrained(path)
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
generation_config = dict(
num_beams=1,
max_new_tokens=512,
do_sample=False,
)
question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
```
## Examples
In this update, InternVL-Chat has **improved support for Chinese and OCR**.
As you can see, although the Lynyrd Skynyrd in the image has some letters that are out of the camera's lens, and TOUR's T is blocked, the model is still able to recognize it correctly.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/-jQ8jCctx1VjkzVxzChQa.png)
This model can also conduct in-depth analysis of AAAI's official website and identify important information in the web page.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/08W04RdT3PmzJuGwFU3--.png)
## Evaluation
**MultiModal Benchmark**
| MME | MMB<sub>dev/test</sub> | MMB-CN<sub>dev/test</sub> | POPE | MMMU<sub>val/test</sub> | CMMMU<sub>val/test</sub> | Tiny<sub>LVLM</sub> | LLaVA<sub>bench</sub> |
| -------------- | ---------------------- | ------------------------- | ---- | ----------------------- | ------------------------ | ------------------- | --------------------- |
| 1672.3 / 341.1 | 76.6 / 75.4 | 71.5 / 70.1 | 87.2 | 39.1 / 35.3 | 34.8 / 34.0 | 344.5 | 76.3 |
**Visual Question Answering**
| VQAv2<sub>test</sub> | OKVQA<sub>val</sub> | TextVQA<sub>val</sub> | VizWiz<sub>val/test</sub> | AI2D<sub>test</sub> | GQA<sub>test</sub> | SQA<sub>test</sub> |
| -------------------- | ------------------- | --------------------- | ------------------------- | ------------------- | ------------------ | ------------------ |
| 80.9 | 64.2 | 65.8 | 58.3 / 57.3 | 70.23 | 62.4 | 91.2 |
**Image Captioning**
| COCO<sub>test</sub> | Flickr30K<sub>test</sub> | NoCaps<sub>val</sub> |
| ------------------- | ------------------------ | -------------------- |
| 141.8 | 84.3 | 120.4 |
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
```
## License
This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.
Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
## Acknowledgement
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
|