A newer version of this model is available: OpenGVLab/InternVL2_5-26B-AWQ

InternVL-Chat-V1-5-AWQ

[πŸ“‚ GitHub] [πŸ“œ InternVL 1.0] [πŸ“œ InternVL 1.5] [πŸ“œ Mini-InternVL] [πŸ“œ InternVL 2.5]

[πŸ†• Blog] [πŸ—¨οΈ Chat Demo] [πŸ€— HF Demo] [πŸš€ Quick Start] [πŸ“– Documents]

Introduction

INT4 Weight-only Quantization and Deployment (W4A16)

LMDeploy adopts AWQ algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.

LMDeploy supports the following NVIDIA GPU for W4A16 inference:

  • Turing(sm75): 20 series, T4

  • Ampere(sm80,sm86): 30 series, A10, A16, A30, A100

  • Ada Lovelace(sm90): 40 series

Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.

pip install lmdeploy>=0.5.3

This article comprises the following sections:

Inference

Trying the following codes, you can perform the batched offline inference with the quantized model:

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL-Chat-V1-5-AWQ'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
backend_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline(model, backend_config=backend_config, log_level='INFO')
response = pipe(('describe this image', image))
print(response.text)

For more information about the pipeline parameters, please refer to here.

Service

LMDeploy's api_server enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:

lmdeploy serve api_server OpenGVLab/InternVL-Chat-V1-5-AWQ --server-port 23333 --model-format awq

To use the OpenAI-style interface, you need to install OpenAI:

pip install openai

Then, use the code below to make the API call:

from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)

License

This project is released under the MIT License. This project uses the pre-trained internlm2-chat-20b as a component, which is licensed under the Apache License 2.0.

Citation

If you find this project useful in your research, please consider citing:

@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
Downloads last month
429
Safetensors
Model size
9.3B params
Tensor type
I32
Β·
FP16
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for OpenGVLab/InternVL-Chat-V1-5-AWQ

Quantized
(1)
this model

Collection including OpenGVLab/InternVL-Chat-V1-5-AWQ