license: mit
pipeline_tag: image-text-to-text
library_name: transformers
language:
- multilingual
tags:
- internvl
- vision
- ocr
- multi-image
- video
- custom_code
InternVL2-Pretrain-Models
[๐ GitHub] [๐ InternVL 1.0] [๐ InternVL 1.5] [๐ Mini-InternVL] [๐ InternVL 2.5]
[๐ Blog] [๐จ๏ธ Chat Demo] [๐ค HF Demo] [๐ Quick Start] [๐ Documents]
About This Repository
This repository hosts the pre-trained models of InternVL 2.0, specifically from the Stage-1 pre-training phase. During this phase, the models are trained to align multimodal inputsโincluding text, images, and videosโestablishing the foundational capabilities necessary for the subsequent instruction-tuning stage.
Introduction
We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of instruction-tuned models, ranging from 1 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-1B model.
Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our blog and GitHub.
Model Name | Vision Part | Language Part | HF Link | MS Link |
---|---|---|---|---|
InternVL2-1B | InternViT-300M-448px | Qwen2-0.5B-Instruct | ๐ค link | ๐ค link |
InternVL2-2B | InternViT-300M-448px | internlm2-chat-1_8b | ๐ค link | ๐ค link |
InternVL2-4B | InternViT-300M-448px | Phi-3-mini-128k-instruct | ๐ค link | ๐ค link |
InternVL2-8B | InternViT-300M-448px | internlm2_5-7b-chat | ๐ค link | ๐ค link |
InternVL2-26B | InternViT-6B-448px-V1-5 | internlm2-chat-20b | ๐ค link | ๐ค link |
InternVL2-40B | InternViT-6B-448px-V1-5 | Nous-Hermes-2-Yi-34B | ๐ค link | ๐ค link |
InternVL2-Llama3-76B | InternViT-6B-448px-V1-5 | Hermes-2-Theta-Llama-3-70B | ๐ค link | ๐ค link |
License
This project is released under the MIT license.
Citation
If you find this project useful in your research, please consider citing:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}