File size: 11,119 Bytes
df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 df06a86 30e1068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
---
license: cc-by-nc-4.0
language:
- ro
base_model:
- OpenLLM-Ro/RoLlama3.1-8b-Instruct
datasets:
- OpenLLM-Ro/ro_dpo_helpsteer
model-index:
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit
results:
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_arc_challenge
type: OpenLLM-Ro/ro_arc_challenge
metrics:
- name: Average accuracy
type: accuracy
value: 42.74
- name: 0-shot
type: accuracy
value: 40.79
- name: 1-shot
type: accuracy
value: 40.36
- name: 3-shot
type: accuracy
value: 43.36
- name: 5-shot
type: accuracy
value: 44.04
- name: 10-shot
type: accuracy
value: 43.87
- name: 25-shot
type: accuracy
value: 44.04
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_mmlu
type: OpenLLM-Ro/ro_mmlu
metrics:
- name: Average accuracy
type: accuracy
value: 42.27
- name: 0-shot
type: accuracy
value: 43.23
- name: 1-shot
type: accuracy
value: 42.47
- name: 3-shot
type: accuracy
value: 42.19
- name: 5-shot
type: accuracy
value: 41.19
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_winogrande
type: OpenLLM-Ro/ro_winogrande
metrics:
- name: Average accuracy
type: accuracy
value: 64.94
- name: 0-shot
type: accuracy
value: 63.14
- name: 1-shot
type: accuracy
value: 64.64
- name: 3-shot
type: accuracy
value: 65.43
- name: 5-shot
type: accuracy
value: 66.54
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_hellaswag
type: OpenLLM-Ro/ro_hellaswag
metrics:
- name: Average accuracy
type: accuracy
value: 52.39
- name: 0-shot
type: accuracy
value: 52.42
- name: 1-shot
type: accuracy
value: 52.30
- name: 3-shot
type: accuracy
value: 52.60
- name: 5-shot
type: accuracy
value: 52.20
- name: 10-shot
type: accuracy
value: 52.42
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_gsm8k
type: OpenLLM-Ro/ro_gsm8k
metrics:
- name: Average accuracy
type: accuracy
value: 38.87
- name: 1-shot
type: accuracy
value: 28.13
- name: 3-shot
type: accuracy
value: 42.23
- name: 5-shot
type: accuracy
value: 46.25
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_truthfulqa
type: OpenLLM-Ro/ro_truthfulqa
metrics:
- name: Average accuracy
type: accuracy
value: 48.67
- name: 0-shot
type: accuracy
value: 48.67
- task:
type: text-generation
dataset:
name: LaRoSeDa_binary
type: LaRoSeDa_binary
metrics:
- name: Average macro-f1
type: macro-f1
value: 97.47
- name: 0-shot
type: macro-f1
value: 97.43
- name: 1-shot
type: macro-f1
value: 97.33
- name: 3-shot
type: macro-f1
value: 97.70
- name: 5-shot
type: macro-f1
value: 97.43
- task:
type: text-generation
dataset:
name: LaRoSeDa_multiclass
type: LaRoSeDa_multiclass
metrics:
- name: Average macro-f1
type: macro-f1
value: 64.05
- name: 0-shot
type: macro-f1
value: 65.90
- name: 1-shot
type: macro-f1
value: 64.68
- name: 3-shot
type: macro-f1
value: 62.36
- name: 5-shot
type: macro-f1
value: 63.27
- task:
type: text-generation
dataset:
name: WMT_EN-RO
type: WMT_EN-RO
metrics:
- name: Average bleu
type: bleu
value: 20.54
- name: 0-shot
type: bleu
value: 7.20
- name: 1-shot
type: bleu
value: 25.68
- name: 3-shot
type: bleu
value: 24.50
- name: 5-shot
type: bleu
value: 24.78
- task:
type: text-generation
dataset:
name: WMT_RO-EN
type: WMT_RO-EN
metrics:
- name: Average bleu
type: bleu
value: 21.16
- name: 0-shot
type: bleu
value: 2.59
- name: 1-shot
type: bleu
value: 17.54
- name: 3-shot
type: bleu
value: 30.82
- name: 5-shot
type: bleu
value: 33.67
- task:
type: text-generation
dataset:
name: XQuAD
type: XQuAD
metrics:
- name: Average exact_match
type: exact_match
value: 21.45
- name: Average f1
type: f1
value: 37.73
- name: 0-shot exact_match
type: exact_match
value: 3.45
- name: 0-shot f1
type: f1
value: 12.36
- name: 1-shot exact_match
type: exact_match
value: 32.02
- name: 1-shot f1
type: f1
value: 55.70
- name: 3-shot exact_match
type: exact_match
value: 33.78
- name: 3-shot f1
type: f1
value: 54.15
- name: 5-shot exact_match
type: exact_match
value: 16.55
- name: 5-shot f1
type: f1
value: 28.71
- task:
type: text-generation
dataset:
name: STS
type: STS
metrics:
- name: Average pearson
type: pearson
value: 76.93
- name: Average spearman
type: spearman
value: 77.08
- name: 1-shot pearson
type: pearson
value: 77.02
- name: 1-shot spearman
type: spearman
value: 77.80
- name: 3-shot pearson
type: pearson
value: 76.93
- name: 3-shot spearman
type: spearman
value: 77.00
- name: 5-shot pearson
type: pearson
value: 76.85
- name: 5-shot spearman
type: spearman
value: 76.45
---
# Model Card for 4-bit RoLlama3.1-8b-Instruct-DPO
*Built from [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO), quantized to 4-bit.*
This variant of **RoLlama3.1-8b-Instruct-DPO** provides a reduced footprint through 4-bit quantization, aimed at enabling usage on resource-constrained GPUs while preserving a high fraction of the model’s capabilities.
## Model Details
## Comparison to 16 bit
It loooks that the effects of the quantization are minimal :
| **Task** | **Metric** | **FP16 Original** | **4-bit** | **Absolute Diff.** | **% Change** |
|--------------------------|-----------------------|-------------------|-----------------|---------------------|--------------------|
| **ARC Challenge** | Avg. Accuracy | 44.84 | 42.74 | -2.10 | -4.68% |
| **MMLU** | Avg. Accuracy | 55.06 | 42.27 | -12.79 | -23.23% |
| **Winogrande** | Avg. Accuracy | 65.87 | 64.94 | -0.93 | -1.41% |
| **Hellaswag** | Avg. Accuracy | 58.67 | 52.39 | -6.28 | -10.70% |
| **GSM8K** | Avg. Accuracy | 44.17 | 38.87 | -5.30 | -11.99% |
| **TruthfulQA** | Avg. Accuracy | 47.82 | 48.67 | +0.85 | +1.78% |
| **LaRoSeDa (binary)** | Macro-F1 | 96.10 | 97.47 | +1.37 | +1.43% |
| **LaRoSeDa (multiclass)**| Macro-F1 | 55.37 | 64.05 | +8.68 | +15.68% |
| **WMT EN-RO** | BLEU | 21.29 | 20.54 | -0.75 | -3.52% |
| **WMT RO-EN** | BLEU | 21.86 | 21.16 | -0.70 | -3.20% |
| **XQuAD (avg)** | EM / F1 | 21.58 / 36.54 | 21.45 / 37.73 | ~-0.13 / +1.19 | -0.60% / +3.26% |
| **STS (avg)** | Spearman / Pearson | 78.01 / 77.98 | 77.08 / 76.93 | -0.93 / -1.05 | -1.19% / -1.35% |
### Model Description
- **Developed by:** OpenLLM-Ro
- **Language(s):** Romanian
- **License:** cc-by-nc-4.0
- **Quantized from model:** [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO)
- **Quantization:** 4-bit
Quantization reduces model size and improves inference speed but can lead to small drops in performance. Below is a comprehensive table of the main benchmarks comparing the original full-precision version with the new 4-bit variant.
## How to Use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
chat = [
{"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
{"role": "user", "content": instruction},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|