PRESTO-yield / README.md
hcaoaf's picture
Update README.md
72436ef verified
metadata
license: apache-2.0
dataset: yield
tags:
  - finetuned
  - multimodal
inference: false

These are weights for a version of checkpoints/stage2/llava-moleculestm-vicuna-7b-v1.5-pretrain_all finetuned for multimodal applications.

Modalities

  • Molecule2DModality (use <molecule_2d> in text and provide molecules

Usage

GitHub: https://github.com/IDEA-XL/PRESTO (includes training scripts and basic inference server)

Dataset

yield (9515 examples)

Training Device(s)

name, pci.bus_id, vbios_version
NVIDIA RTX A6000, 00000000:01:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:25:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:41:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:61:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:81:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:A1:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:C1:00.0, 94.02.5C.00.02
NVIDIA RTX A6000, 00000000:E1:00.0, 94.02.5C.00.02

Model

LlamaLMMForCausalLM.model =

LlamaLMMForCausalLM(
  (model): LlamaLMMModel(
    (embed_tokens): Embedding(32000, 4096, padding_idx=0)
    (layers): ModuleList(
      (0-31): 32 x LlamaDecoderLayer(
        (self_attn): LlamaSdpaAttention(
          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
    (molecule_2d_lmm_projector): _MLPVectorProjector(
      (mlp): Sequential(
        (0): Linear(in_features=300, out_features=4096, bias=True)
        (1): GELU(approximate='none')
        (2): Linear(in_features=4096, out_features=4096, bias=True)
      )
    )
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)