はじめに

これは,東京大学松尾・岩澤研究室のLLM講座2024のコンペティションで提出するためのモデルです.

llm-jp/llm-jp-3-13bに,QLoRAによるSFTを施して,LoRAアダプタのみをこちらにアップしています.

chat templateは,weblab-GENIAC/Tanuki-8B-dpo-v1.0のものと同一のものを使用しています.

推論方法

提供された環境で,以下のように推論します.L4 GPU×1のインスタンスで,vLLMを用いて推論します.

Jupyter Notebookで,一かたまりごとに一つのセルになっています.順番に実行してください.

!pip uninstall numpy -y
!pip install numpy==1.26.4

%%time
%pip install vllm==0.6.4.post1 --force-reinstall

!pip install ipywidgets

import time
import torch
import transformers
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
import vllm 
from vllm.lora.request import LoRARequest
from jinja2 import Template
print(vllm.__version__)

MAX_LENGTH = 1024
MODEL_NAME = "llm-jp/llm-jp-3-13b"
print(MODEL_NAME)

import os
os.environ["HF_TOKEN"] = "あなたのHugging Faceトークン"

from vllm.lora.request import LoRARequest
llm = vllm.LLM(
    MODEL_NAME, 
    tensor_parallel_size=1, 
    gpu_memory_utilization=0.95,
    trust_remote_code=True,
    enforce_eager=True,
    max_model_len=MAX_LENGTH,
    enable_lora=True,
    quantization="bitsandbytes",
    load_format="bitsandbytes"
)
tokenizer = llm.get_tokenizer()

from transformers import AutoTokenizer
sft_tokenizer = AutoTokenizer.from_pretrained(
    "weblab-GENIAC/Tanuki-8B-dpo-v1.0"
)
tokenizer.chat_template = sft_tokenizer.chat_template

from huggingface_hub import snapshot_download
lora_path = snapshot_download(repo_id="OsakanaTeishoku/1204lora")

from datasets import load_dataset
data_files = {"test": "elyza-tasks-100-TV_0.jsonl"}  
tasks = load_dataset("json", data_files=data_files, split="test")

messages_list = [
    [{"role": "user", "content": tasks["input"][i]}] for i in range(len(tasks))
]
prompts = [line[0]["content"] for line in messages_list]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
sampling_params = vllm.SamplingParams(
    temperature=0.7,
    max_tokens=1024,
    repetition_penalty=1.05,
    top_p=0.9,
)
outputs = llm.generate(
    prompt_token_ids=prompt_token_ids,
    sampling_params=sampling_params,
    lora_request=LoRARequest("lora", 1, lora_path), # LoRA adapter
)
for prompt, response in zip(prompts, outputs):
    print("prompt:", prompt)
    print("output:", response.outputs[0].text.strip())
    print("-"*80)   
import json
data = [{
    "task_id": i, 
    #"input": prompts[i],
    "output": outputs[i].outputs[0].text.strip()
} for i in range(len(tasks))]
file_path_with_unicode = 'output.jsonl'
with open(file_path_with_unicode, 'w', encoding='utf-8') as file:
    for entry in data:
        json.dump(entry, file, ensure_ascii=False)
        file.write('\n')
print(f"Saved json {file_path_with_unicode} !")

Change log

  • 2024/12/26: 推論コードの余分なコメント部分の削除,リンクの追加

Uploaded model

  • Developed by: OsakanaTeishoku
  • License: cc-by-nc-sa-4.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for OsakanaTeishoku/1204lora

Finetuned
(1144)
this model