|
--- |
|
tags: |
|
- vision |
|
- image-classification |
|
datasets: |
|
- OttoYu/Treecondition |
|
widget: |
|
- src: https://bit.ly/3KbaDNI |
|
example_title: Canker Diseases |
|
- src: https://bit.ly/40FN317 |
|
example_title: Bacterial canker |
|
- src: https://bit.ly/3LYSGn6 |
|
example_title: Citrus canker |
|
- src: https://www.elitetreecare.com/wp-content/uploads/2016/06/black-knot.jpg |
|
example_title: Black knot |
|
- src: https://gtr-arbor.com.hk/wp-content/uploads/2015/01/fungi2-5.jpg |
|
example_title: Fungi |
|
- src: https://gtr-arbor.com.hk/wp-content/uploads/2011/05/insectA2-2.jpg |
|
example_title: Termite |
|
co2_eq_emissions: |
|
emissions: 1.3038362907488008 |
|
--- |
|
|
|
# 🌳 Tree Condition Classification 樹況分類 (bilingual) |
|
### Model Description |
|
This online application covers 22 most typical tree disease over 290+ images. If you find any trees that has hidden injures, you can classifies with our model and report the tree condition via this form (https://rb.gy/c1sfja). 此在線程式涵蓋22種官方部門樹況分類的標準,超過290張圖像。如果您發現任何樹木有隱傷,您可以使用我們的模型進行分類並通過此表格報告樹木狀況。 |
|
|
|
- **Developed by:** Yu Kai Him Otto |
|
- **Shared via:** Huggingface.co |
|
- **Model type:** Opensource |
|
|
|
## Uses |
|
You can use the this model for tree condition image classification. |
|
|
|
## Training Details |
|
### Training Data |
|
|
|
- Loss: 0.355 |
|
- Accuracy: 0.852 |
|
- Macro F1: 0.787 |
|
- Micro F1: 0.852 |
|
- Weighted F1: 0.825 |
|
- Macro Precision: 0.808 |
|
- Micro Precision: 0.852 |
|
- Weighted Precision: 0.854 |
|
- Macro Recall: 0.811 |
|
- Micro Recall: 0.852 |
|
- Weighted Recall: 0.852 |