How to finetune
Can this be finetuned like GPT-2 but better due to its modern AI technology?
I would like an example code for π€ Transformers, please
Hi,
You're correct this model, like many others, can be fine-tuned.
However, providing a specific code example for fine-tuning isn't straightforward, as the process can vary depending on your specific use case, dataset, and desired outcome.
I'd recommend reviewing:
https://pytorch.org/tutorials/beginner/introyt/trainingyt.html
https://huggingface.co/docs/trl/main/en/sft_trainer
https://huggingface.co/docs/transformers/perf_train_gpu_one
https://github.com/hiyouga/LLaMA-Factory
This code has been known to work, I've tried it.
It can be scaled to 10 epochs or more with no major time extension. I don't know what's the epoch-to-data ratio before overfitting occurs.
from transformers import TextDataset, DataCollatorForLanguageModeling
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import Trainer, TrainingArguments
import logging
import torch
logging.basicConfig(level=logging.INFO)
def load_dataset(file_path, tokenizer, block_size=128):
return TextDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=block_size,
)
def load_data_collator(tokenizer, mlm=False):
return DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=mlm,
)
def train():
logging.info("Initializing...")
tokenizer = AutoTokenizer.from_pretrained("Lite-Oute-1-65M")
train_dataset = load_dataset("dataset.txt", tokenizer)
data_collator = load_data_collator(tokenizer)
tokenizer.save_pretrained("result")
model = AutoModelForCausalLM.from_pretrained("Lite-Oute-1-65M")
model.save_pretrained("result")
training_args = TrainingArguments(
output_dir="result",
num_train_epochs=5,
learning_rate=0.001,
per_device_train_batch_size=16,
gradient_accumulation_steps=16,
fp16=True,
warmup_ratio=0.1,
fp16_opt_level="O3",
logging_strategy="epoch",
save_steps=250,
save_total_limit=2,
report_to="none",
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
if torch.cuda.is_available():
logging.info("Training using GPU")
else:
logging.info("Training using CPU")
trainer.train()
trainer.save_model()
tokenizer.save_pretrained("result")
if __name__ == "__main__":
train()