P1NHE4D's picture
update model card README.md
b1611fd
metadata
language:
  - nn
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - norwegian-parliament
metrics:
  - wer
model-index:
  - name: whisper-medium-nn-v3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Stortingskorpuset
          type: norwegian-parliament
          config: default
          split: validation
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 11.337582785573966

whisper-medium-nn-v3

This model is a fine-tuned version of openai/whisper-medium on the Stortingskorpuset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2116
  • Wer: 11.3376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4413 0.25 2000 0.4447 26.7707
0.1945 1.1 4000 0.3042 17.8344
0.1013 1.35 6000 0.2421 14.2138
0.0308 2.2 8000 0.2116 11.3376

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2