metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: whisper_tiny_fleurs
results: []
whisper_tiny_fleurs
This model is a fine-tuned version of openai/whisper-tiny on the /home/investigacion/disco4TB/workspace_pablo/firvox_whisper_research/finetunnig/dataset/dataset_parquet/dataset_1000x6_noFirVox_correctedpaths.parquet dataset. It achieves the following results on the evaluation set:
- Loss: 0.9658
- Accuracy: 0.7744
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0287 | 1.0 | 80 | 0.9658 | 0.7744 |
Framework versions
- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.19.1
- Tokenizers 0.19.1