whisper-small-sl / README.md
Padajno's picture
End of training
57c00e4 verified
|
raw
history blame
2.27 kB
metadata
language:
  - sl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small Sl - Padajno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: sl
          split: test
          args: sl
        metrics:
          - name: Wer
            type: wer
            value: 25.936967632027258

Whisper Small Sl - Padajno

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3707
  • Wer Ortho: 28.2066
  • Wer: 25.9370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.9497 0.6135 100 0.8683 37.6703 35.8745
0.171 1.2270 200 0.3742 33.4847 31.2039
0.1841 1.8405 300 0.3407 31.0585 28.7337
0.0592 2.4540 400 0.3492 29.5545 27.1153
0.0434 3.0675 500 0.3624 29.7106 27.2572
0.027 3.6810 600 0.3707 28.2066 25.9370

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1