Padomin's picture
update model card README.md
db07742
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-4front-1body-4rear
    results: []

t5-base-TEDxJP-4front-1body-4rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4398
  • Wer: 0.1697
  • Mer: 0.1641
  • Wil: 0.2506
  • Wip: 0.7494
  • Hits: 55824
  • Substitutions: 6360
  • Deletions: 2403
  • Insertions: 2197
  • Cer: 0.1335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5976 1.0 1457 0.4725 0.2267 0.2107 0.2985 0.7015 54877 6654 3056 4935 0.2024
0.4849 2.0 2914 0.4229 0.1789 0.1726 0.2590 0.7410 55401 6358 2828 2371 0.1432
0.4632 3.0 4371 0.4167 0.1725 0.1667 0.2529 0.7471 55723 6347 2517 2280 0.1343
0.3981 4.0 5828 0.4146 0.1716 0.1658 0.2521 0.7479 55784 6355 2448 2282 0.1336
0.3551 5.0 7285 0.4189 0.1713 0.1652 0.2512 0.7488 55909 6340 2338 2388 0.1345
0.3253 6.0 8742 0.4238 0.1714 0.1656 0.2514 0.7486 55805 6315 2467 2291 0.1359
0.308 7.0 10199 0.4292 0.1703 0.1645 0.2506 0.7494 55862 6341 2384 2271 0.1353
0.324 8.0 11656 0.4304 0.1693 0.1637 0.2497 0.7503 55856 6324 2407 2205 0.1336
0.2861 9.0 13113 0.4356 0.1694 0.1639 0.2501 0.7499 55814 6336 2437 2166 0.1332
0.2788 10.0 14570 0.4398 0.1697 0.1641 0.2506 0.7494 55824 6360 2403 2197 0.1335

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1