Padomin's picture
update model card README.md
540b531
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-4front-1body-4rear
    results: []

t5-base-TEDxJP-4front-1body-4rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4413
  • Wer: 0.1701
  • Mer: 0.1644
  • Wil: 0.2507
  • Wip: 0.7493
  • Hits: 55851
  • Substitutions: 6351
  • Deletions: 2385
  • Insertions: 2250
  • Cer: 0.1341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6042 1.0 1457 0.4733 0.2042 0.1938 0.2829 0.7171 54861 6662 3064 3461 0.1725
0.5747 2.0 2914 0.4297 0.1812 0.1744 0.2610 0.7390 55403 6393 2791 2517 0.1458
0.4509 3.0 4371 0.4187 0.1751 0.1686 0.2557 0.7443 55743 6433 2411 2464 0.1393
0.4216 4.0 5828 0.4133 0.1715 0.1656 0.2515 0.7485 55811 6324 2452 2301 0.1346
0.356 5.0 7285 0.4219 0.1703 0.1649 0.2502 0.7498 55717 6262 2608 2129 0.1327
0.3174 6.0 8742 0.4232 0.1700 0.1642 0.2494 0.7506 55863 6253 2471 2253 0.1331
0.2992 7.0 10199 0.4309 0.1701 0.1647 0.2511 0.7489 55746 6350 2491 2148 0.1332
0.307 8.0 11656 0.4317 0.1699 0.1644 0.2505 0.7495 55801 6331 2455 2189 0.1336
0.2692 9.0 13113 0.4385 0.1699 0.1643 0.2504 0.7496 55834 6334 2419 2223 0.1346
0.2965 10.0 14570 0.4413 0.1701 0.1644 0.2507 0.7493 55851 6351 2385 2250 0.1341

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1