Padomin's picture
update model card README.md
d7e7b5b
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-4front-1body-4rear
    results: []

t5-base-TEDxJP-4front-1body-4rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4419
  • Wer: 0.1696
  • Mer: 0.1638
  • Wil: 0.2494
  • Wip: 0.7506
  • Hits: 55898
  • Substitutions: 6290
  • Deletions: 2399
  • Insertions: 2262
  • Cer: 0.1328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5923 1.0 1457 0.4757 0.2180 0.2043 0.2941 0.7059 54841 6796 2950 4332 0.1931
0.5311 2.0 2914 0.4278 0.1817 0.1745 0.2611 0.7389 55507 6397 2683 2656 0.1467
0.4511 3.0 4371 0.4187 0.1715 0.1659 0.2529 0.7471 55668 6395 2524 2157 0.1322
0.3544 4.0 5828 0.4179 0.1700 0.1644 0.2498 0.7502 55795 6272 2520 2185 0.1319
0.3649 5.0 7285 0.4210 0.1700 0.1645 0.2506 0.7494 55799 6334 2454 2195 0.1319
0.3622 6.0 8742 0.4223 0.1706 0.1649 0.2503 0.7497 55823 6278 2486 2256 0.1358
0.3286 7.0 10199 0.4258 0.1692 0.1638 0.2492 0.7508 55807 6273 2507 2149 0.1325
0.3069 8.0 11656 0.4307 0.1697 0.1640 0.2493 0.7507 55861 6265 2461 2232 0.1329
0.2776 9.0 13113 0.4403 0.1697 0.1640 0.2497 0.7503 55883 6304 2400 2257 0.1328
0.3175 10.0 14570 0.4419 0.1696 0.1638 0.2494 0.7506 55898 6290 2399 2262 0.1328

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1