Padomin's picture
update model card README.md
cdbcb63
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-6front-1body-6rear
    results: []

t5-base-TEDxJP-6front-1body-6rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4380
  • Wer: 0.1691
  • Mer: 0.1635
  • Wil: 0.2493
  • Wip: 0.7507
  • Hits: 55884
  • Substitutions: 6313
  • Deletions: 2390
  • Insertions: 2217
  • Cer: 0.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5757 1.0 1457 0.4697 0.2091 0.1971 0.2856 0.7144 55012 6650 2925 3927 0.1749
0.543 2.0 2914 0.4228 0.1857 0.1777 0.2657 0.7343 55522 6547 2518 2932 0.1492
0.4448 3.0 4371 0.4108 0.1728 0.1670 0.2537 0.7463 55649 6380 2558 2220 0.1353
0.3968 4.0 5828 0.4075 0.1705 0.1649 0.2508 0.7492 55762 6314 2511 2187 0.1336
0.3529 5.0 7285 0.4146 0.1711 0.1651 0.2515 0.7485 55875 6370 2342 2337 0.1369
0.3135 6.0 8742 0.4188 0.1687 0.1633 0.2490 0.7510 55820 6291 2476 2128 0.1337
0.3405 7.0 10199 0.4271 0.1694 0.1637 0.2497 0.7503 55889 6324 2374 2242 0.1325
0.3131 8.0 11656 0.4301 0.1688 0.1634 0.2495 0.7505 55835 6330 2422 2152 0.1315
0.2796 9.0 13113 0.4342 0.1688 0.1633 0.2493 0.7507 55886 6327 2374 2203 0.1335
0.2722 10.0 14570 0.4380 0.1691 0.1635 0.2493 0.7507 55884 6313 2390 2217 0.1333

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1