metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-6front-1body-6rear
results: []
t5-base-TEDxJP-6front-1body-6rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4380
- Wer: 0.1691
- Mer: 0.1635
- Wil: 0.2493
- Wip: 0.7507
- Hits: 55884
- Substitutions: 6313
- Deletions: 2390
- Insertions: 2217
- Cer: 0.1333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5757 | 1.0 | 1457 | 0.4697 | 0.2091 | 0.1971 | 0.2856 | 0.7144 | 55012 | 6650 | 2925 | 3927 | 0.1749 |
0.543 | 2.0 | 2914 | 0.4228 | 0.1857 | 0.1777 | 0.2657 | 0.7343 | 55522 | 6547 | 2518 | 2932 | 0.1492 |
0.4448 | 3.0 | 4371 | 0.4108 | 0.1728 | 0.1670 | 0.2537 | 0.7463 | 55649 | 6380 | 2558 | 2220 | 0.1353 |
0.3968 | 4.0 | 5828 | 0.4075 | 0.1705 | 0.1649 | 0.2508 | 0.7492 | 55762 | 6314 | 2511 | 2187 | 0.1336 |
0.3529 | 5.0 | 7285 | 0.4146 | 0.1711 | 0.1651 | 0.2515 | 0.7485 | 55875 | 6370 | 2342 | 2337 | 0.1369 |
0.3135 | 6.0 | 8742 | 0.4188 | 0.1687 | 0.1633 | 0.2490 | 0.7510 | 55820 | 6291 | 2476 | 2128 | 0.1337 |
0.3405 | 7.0 | 10199 | 0.4271 | 0.1694 | 0.1637 | 0.2497 | 0.7503 | 55889 | 6324 | 2374 | 2242 | 0.1325 |
0.3131 | 8.0 | 11656 | 0.4301 | 0.1688 | 0.1634 | 0.2495 | 0.7505 | 55835 | 6330 | 2422 | 2152 | 0.1315 |
0.2796 | 9.0 | 13113 | 0.4342 | 0.1688 | 0.1633 | 0.2493 | 0.7507 | 55886 | 6327 | 2374 | 2203 | 0.1335 |
0.2722 | 10.0 | 14570 | 0.4380 | 0.1691 | 0.1635 | 0.2493 | 0.7507 | 55884 | 6313 | 2390 | 2217 | 0.1333 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1