Finetune Whisper on Frisian and English
Collection
Assessing Knowledge-Distillation Based Compression of Whisper Model for Frisian ASR
•
12 items
•
Updated
This model is a fine-tuned version of openai/whisper-small on the librispeech dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.482 | 33.3333 | 100 | 0.7436 | 3.4183 |
0.2402 | 66.6667 | 200 | 0.5833 | 3.4448 |
0.0135 | 100.0 | 300 | 0.3881 | 3.5834 |
0.0029 | 133.3333 | 400 | 0.3731 | 3.6324 |
0.0019 | 166.6667 | 500 | 0.3685 | 3.6568 |
0.0014 | 200.0 | 600 | 0.3663 | 3.6854 |
0.0012 | 233.3333 | 700 | 0.3649 | 3.7098 |
0.0011 | 266.6667 | 800 | 0.3641 | 3.7241 |
0.001 | 300.0 | 900 | 0.3637 | 3.7465 |
0.001 | 333.3333 | 1000 | 0.3635 | 3.7424 |
Base model
openai/whisper-small