File size: 2,440 Bytes
ccc6a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- librispeech_asr
metrics:
- wer
model-index:
- name: Whisper-Small En-10m
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: librispeech
      type: librispeech_asr
      config: default
      split: None
      args: 'config: en, split: test-clean'
    metrics:
    - name: Wer
      type: wer
      value: 3.7424325811777654
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-Small En-10m

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3635
- Wer: 3.7424

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Wer    |
|:-------------:|:--------:|:----:|:---------------:|:------:|
| 0.482         | 33.3333  | 100  | 0.7436          | 3.4183 |
| 0.2402        | 66.6667  | 200  | 0.5833          | 3.4448 |
| 0.0135        | 100.0    | 300  | 0.3881          | 3.5834 |
| 0.0029        | 133.3333 | 400  | 0.3731          | 3.6324 |
| 0.0019        | 166.6667 | 500  | 0.3685          | 3.6568 |
| 0.0014        | 200.0    | 600  | 0.3663          | 3.6854 |
| 0.0012        | 233.3333 | 700  | 0.3649          | 3.7098 |
| 0.0011        | 266.6667 | 800  | 0.3641          | 3.7241 |
| 0.001         | 300.0    | 900  | 0.3637          | 3.7465 |
| 0.001         | 333.3333 | 1000 | 0.3635          | 3.7424 |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1