metadata
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
base_model: ylacombe/w2v-bert-2.0
model-index:
- name: w2v-bert-2.0-ur
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: ur
split: test
args: ur
metrics:
- type: wer
value: 0.2984838198687486
name: Wer
w2v-bert-2.0-ur
This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.2985
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2789 | 2.4 | 300 | inf | 0.3200 |
0.2724 | 4.8 | 600 | inf | 0.3320 |
0.1912 | 7.2 | 900 | inf | 0.2935 |
0.0931 | 9.6 | 1200 | inf | 0.2985 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1