PatWang's picture
End of training
e0bfb12 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert-base-uncased-finetuned-sql-classification-with_questionV2
    results: []

bert-base-uncased-finetuned-sql-classification-with_questionV2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4672
  • Accuracy: 0.9050
  • F1: 0.9172
  • Precision: 0.8744
  • Recall: 0.9645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5044 1.0 645 0.4149 0.8376 0.8617 0.8046 0.9275
0.3823 2.0 1290 0.3644 0.8535 0.8797 0.7965 0.9822
0.3289 3.0 1935 0.2915 0.8857 0.8998 0.8620 0.9410
0.2576 4.0 2580 0.3151 0.8860 0.9004 0.8602 0.9446
0.2224 5.0 3225 0.3157 0.9039 0.9155 0.8795 0.9545
0.1899 6.0 3870 0.3412 0.9016 0.9140 0.8731 0.9588
0.165 7.0 4515 0.3729 0.8973 0.9116 0.8591 0.9709
0.1265 8.0 5160 0.4119 0.9035 0.9162 0.8702 0.9673
0.1162 9.0 5805 0.4244 0.9066 0.9184 0.8766 0.9645
0.0995 10.0 6450 0.4672 0.9050 0.9172 0.8744 0.9645

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2