llama3_false_positives_0609_KTO_hp_screening
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6200
- Eval/rewards/chosen: 0.1376
- Eval/logps/chosen: -196.7612
- Eval/rewards/rejected: 0.1472
- Eval/logps/rejected: -209.5413
- Eval/rewards/margins: -0.0096
- Eval/kl: 1.2612
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss | |
---|---|---|---|---|
0.4989 | 0.96 | 12 | 0.6223 | 0.2616 |
0.6212 | 2.0 | 25 | 0.6215 | 0.8164 |
0.4973 | 2.96 | 37 | 0.6192 | 1.2270 |
0.7188 | 3.84 | 48 | 0.6200 | 1.2612 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for PaulD/llama3_false_positives_0609_KTO_hp_screening
Base model
meta-llama/Meta-Llama-3-8B-Instruct