Direct Use

The model is a language model. The model can be used for token classification, a natural language understanding task in which a label is assigned to some tokens in a text.

Downstream Use

Potential downstream use cases include Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. To learn more about token classification and other potential downstream use cases, see the Hugging Face token classification docs.

Out-of-Scope Use

The model should not be used to intentionally create hostile or alienating environments for people.

Bias, Risks, and Limitations

CONTENT WARNING: Readers should be made aware that language generated by this model may be disturbing or offensive to some and may propagate historical and current stereotypes.

>>> from transformers import pipeline
>>> tokenizer = AutoTokenizer.from_pretrained("Pavan27/NER_Telugu_01")
>>> model = AutoModelForTokenClassification.from_pretrained("Pavan27/NER_Telugu_01")
>>> classifier = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities = True)
>>> classifier("వెస్టిండీస్‌పై పోర్ట్ ఆఫ్ స్పెయిన్‌ వేదిక జరుగుతున్న రెండో టెస్టు తొలి ఇన్నింగ్స్‌లో విరాట్ కోహ్లీ 121 పరుగులతో విదేశాల్లో సెంచరీ కరువును తీర్చుకున్నాడు.")


[{'entity_group': 'LOC',
  'score': 0.9999062,
  'word': 'వెస్టిండీస్',
  'start': 0,
  'end': 11},
 {'entity_group': 'LOC',
  'score': 0.9998613,
  'word': 'పోర్ట్ ఆఫ్ స్పెయిన్',
  'start': 15,
  'end': 34},
 {'entity_group': 'PER',
  'score': 0.99996054,
  'word': 'విరాట్ కోహ్లీ',
  'start': 85,
  'end': 98}]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.