PavanNeerudu's picture
Update README.md
c118243
|
raw
history blame
1.93 kB
metadata
language:
  - en
license: apache-2.0
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-base-finetuned-rte
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE RTE
          type: glue
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5634

T5-base-finetuned-rte

This model is T5 fine-tuned on GLUE RTE dataset. It acheives the following results on the validation set

  • Accuracy: 0.7690

Model Details

T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.

Training procedure

Tokenization

Since, T5 is a text-to-text model, the labels of the dataset are converted as follows: For each example, a sentence as been formed as "rte sentence1: " + rte_sent1 + "sentence 2: " + rte_sent2 and fed to the tokenizer to get the input_ids and attention_mask. For each label, target is choosen as "entailment" if label is 0, else label is "not_entailment" and tokenized to get input_ids and attention_mask . During training, these inputs_ids having pad token are replaced with -100 so that loss is not calculated for them. Then these input ids are given as labels, and above attention_mask of labels is given as decoder attention mask.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-4
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: epsilon=1e-08
  • num_epochs: 3.0

Training results

Epoch Training Loss Validation Accuracy
1 0.1099 0.7617
2 0.0573 0.7617
3 0.0276 0.7690