File size: 9,826 Bytes
8dd8c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import io
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import paddle
from paddle.nn import functional as F
import random
from paddle.io import Dataset
from visualdl import LogWriter
from paddle.vision.transforms import transforms as T
import warnings
import cv2 as cv
from PIL import Image
import re
warnings.filterwarnings("ignore")
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

class SeparableConv2D(paddle.nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(SeparableConv2D, self).__init__()

        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._in_channels = in_channels
        self._data_format = data_format

        # 第一次卷积参数,没有偏置参数
        filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')
        self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)

        # 第二次卷积参数
        filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')
        self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)
        self.bias_pointwise = self.create_parameter(shape=[out_channels],
                                                    attr=bias_attr,
                                                    is_bias=True)

    def convert_to_list(self, value, n, name, dtype=np.int):
        if isinstance(value, dtype):
            return [value, ] * n
        else:
            try:
                value_list = list(value)
            except TypeError:
                raise ValueError("The " + name +
                                "'s type must be list or tuple. Received: " + str(
                                    value))
            if len(value_list) != n:
                raise ValueError("The " + name + "'s length must be " + str(n) +
                                ". Received: " + str(value))
            for single_value in value_list:
                try:
                    dtype(single_value)
                except (ValueError, TypeError):
                    raise ValueError(
                        "The " + name + "'s type must be a list or tuple of " + str(
                            n) + " " + str(dtype) + " . Received: " + str(
                                value) + " "
                        "including element " + str(single_value) + " of type" + " "
                        + str(type(single_value)))
            return value_list

    def forward(self, inputs):
        conv_out = F.conv2d(inputs,
                            self.weight_conv,
                            padding=self._padding,
                            stride=self._stride,
                            dilation=self._dilation,
                            groups=self._in_channels,
                            data_format=self._data_format)

        out = F.conv2d(conv_out,
                       self.weight_pointwise,
                       bias=self.bias_pointwise,
                       padding=0,
                       stride=1,
                       dilation=1,
                       groups=1,
                       data_format=self._data_format)

        return out
class Encoder(paddle.nn.Layer):
    def __init__(self, in_channels, out_channels):
        super(Encoder, self).__init__()

        self.relus = paddle.nn.LayerList(
            [paddle.nn.ReLU() for i in range(2)])
        self.separable_conv_01 = SeparableConv2D(in_channels,
                                                 out_channels,
                                                 kernel_size=3,
                                                 padding='same')
        self.bns = paddle.nn.LayerList(
            [paddle.nn.BatchNorm2D(out_channels) for i in range(2)])

        self.separable_conv_02 = SeparableConv2D(out_channels,
                                                 out_channels,
                                                 kernel_size=3,
                                                 padding='same')
        self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.residual_conv = paddle.nn.Conv2D(in_channels,
                                              out_channels,
                                              kernel_size=1,
                                              stride=2,
                                              padding='same')

    def forward(self, inputs):
        previous_block_activation = inputs

        y = self.relus[0](inputs)
        y = self.separable_conv_01(y)
        y = self.bns[0](y)
        y = self.relus[1](y)
        y = self.separable_conv_02(y)
        y = self.bns[1](y)
        y = self.pool(y)

        residual = self.residual_conv(previous_block_activation)
        y = paddle.add(y, residual)

        return y
class Decoder(paddle.nn.Layer):
    def __init__(self, in_channels, out_channels):
        super(Decoder, self).__init__()

        self.relus = paddle.nn.LayerList(
            [paddle.nn.ReLU() for i in range(2)])
        self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,
                                                           out_channels,
                                                           kernel_size=3,
                                                           padding=1)
        self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,
                                                           out_channels,
                                                           kernel_size=3,
                                                           padding=1)
        self.bns = paddle.nn.LayerList(
            [paddle.nn.BatchNorm2D(out_channels) for i in range(2)]
        )
        self.upsamples = paddle.nn.LayerList(
            [paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]
        )
        self.residual_conv = paddle.nn.Conv2D(in_channels,
                                              out_channels,
                                              kernel_size=1,
                                              padding='same')

    def forward(self, inputs):
        previous_block_activation = inputs

        y = self.relus[0](inputs)
        y = self.conv_transpose_01(y)
        y = self.bns[0](y)
        y = self.relus[1](y)
        y = self.conv_transpose_02(y)
        y = self.bns[1](y)
        y = self.upsamples[0](y)

        residual = self.upsamples[1](previous_block_activation)
        residual = self.residual_conv(residual)

        y = paddle.add(y, residual)

        return y
class PetNet(paddle.nn.Layer):
    def __init__(self, num_classes):
        super(PetNet, self).__init__()

        self.conv_1 = paddle.nn.Conv2D(3, 32,
                                       kernel_size=3,
                                       stride=2,
                                       padding='same')
        self.bn = paddle.nn.BatchNorm2D(32)
        self.relu = paddle.nn.ReLU()

        in_channels = 32
        self.encoders = []
        self.encoder_list = [64, 128, 256]
        self.decoder_list = [256, 128, 64, 32]

        for out_channels in self.encoder_list:
            block = self.add_sublayer('encoder_{}'.format(out_channels),
                                      Encoder(in_channels, out_channels))
            self.encoders.append(block)
            in_channels = out_channels

        self.decoders = []

        for out_channels in self.decoder_list:
            block = self.add_sublayer('decoder_{}'.format(out_channels),
                                      Decoder(in_channels, out_channels))
            self.decoders.append(block)
            in_channels = out_channels

        self.output_conv = paddle.nn.Conv2D(in_channels,
                                            num_classes,
                                            kernel_size=3,
                                            padding='same')

    def forward(self, inputs):
        y = self.conv_1(inputs)
        y = self.bn(y)
        y = self.relu(y)

        for encoder in self.encoders:
            y = encoder(y)

        for decoder in self.decoders:
            y = decoder(y)

        y = self.output_conv(y)
        return y
IMAGE_SIZE = (512, 512)
num_classes = 2
network = PetNet(num_classes)
model = paddle.Model(network)

optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())
layer_state_dict = paddle.load("mymodel.pdparams")
opt_state_dict = paddle.load("optimizer.pdopt")

network.set_state_dict(layer_state_dict)
optimizer.set_state_dict(opt_state_dict)

def FinalImage(mask,image):
    # 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来
    #输入 mask [0,255]的这招图
    #image 必须无条件转化为512*512 三通道彩图
    
    th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]
    blur = cv.GaussianBlur(th,(33,33), 15)
    heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)
    Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)
    return Blendermap

import gradio as gr
def Showsegmentation(image):
    mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()
    mask=mask.astype('uint8')*255
    immask=cv.resize(mask, (512, 512))
    image=cv.resize(image,(512,512))
    blendmask=FinalImage(immask,image)
    return blendmask

gr.Interface(fn=Showsegmentation, inputs="image", outputs="image").launch(share=True)