Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from PIL import Image
|
6 |
+
import paddle
|
7 |
+
from paddle.nn import functional as F
|
8 |
+
import random
|
9 |
+
from paddle.io import Dataset
|
10 |
+
from visualdl import LogWriter
|
11 |
+
from paddle.vision.transforms import transforms as T
|
12 |
+
import warnings
|
13 |
+
import cv2 as cv
|
14 |
+
from PIL import Image
|
15 |
+
import re
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
18 |
+
|
19 |
+
class SeparableConv2D(paddle.nn.Layer):
|
20 |
+
def __init__(self,
|
21 |
+
in_channels,
|
22 |
+
out_channels,
|
23 |
+
kernel_size,
|
24 |
+
stride=1,
|
25 |
+
padding=0,
|
26 |
+
dilation=1,
|
27 |
+
groups=None,
|
28 |
+
weight_attr=None,
|
29 |
+
bias_attr=None,
|
30 |
+
data_format="NCHW"):
|
31 |
+
super(SeparableConv2D, self).__init__()
|
32 |
+
|
33 |
+
self._padding = padding
|
34 |
+
self._stride = stride
|
35 |
+
self._dilation = dilation
|
36 |
+
self._in_channels = in_channels
|
37 |
+
self._data_format = data_format
|
38 |
+
|
39 |
+
# 第一次卷积参数,没有偏置参数
|
40 |
+
filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')
|
41 |
+
self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)
|
42 |
+
|
43 |
+
# 第二次卷积参数
|
44 |
+
filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')
|
45 |
+
self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)
|
46 |
+
self.bias_pointwise = self.create_parameter(shape=[out_channels],
|
47 |
+
attr=bias_attr,
|
48 |
+
is_bias=True)
|
49 |
+
|
50 |
+
def convert_to_list(self, value, n, name, dtype=np.int):
|
51 |
+
if isinstance(value, dtype):
|
52 |
+
return [value, ] * n
|
53 |
+
else:
|
54 |
+
try:
|
55 |
+
value_list = list(value)
|
56 |
+
except TypeError:
|
57 |
+
raise ValueError("The " + name +
|
58 |
+
"'s type must be list or tuple. Received: " + str(
|
59 |
+
value))
|
60 |
+
if len(value_list) != n:
|
61 |
+
raise ValueError("The " + name + "'s length must be " + str(n) +
|
62 |
+
". Received: " + str(value))
|
63 |
+
for single_value in value_list:
|
64 |
+
try:
|
65 |
+
dtype(single_value)
|
66 |
+
except (ValueError, TypeError):
|
67 |
+
raise ValueError(
|
68 |
+
"The " + name + "'s type must be a list or tuple of " + str(
|
69 |
+
n) + " " + str(dtype) + " . Received: " + str(
|
70 |
+
value) + " "
|
71 |
+
"including element " + str(single_value) + " of type" + " "
|
72 |
+
+ str(type(single_value)))
|
73 |
+
return value_list
|
74 |
+
|
75 |
+
def forward(self, inputs):
|
76 |
+
conv_out = F.conv2d(inputs,
|
77 |
+
self.weight_conv,
|
78 |
+
padding=self._padding,
|
79 |
+
stride=self._stride,
|
80 |
+
dilation=self._dilation,
|
81 |
+
groups=self._in_channels,
|
82 |
+
data_format=self._data_format)
|
83 |
+
|
84 |
+
out = F.conv2d(conv_out,
|
85 |
+
self.weight_pointwise,
|
86 |
+
bias=self.bias_pointwise,
|
87 |
+
padding=0,
|
88 |
+
stride=1,
|
89 |
+
dilation=1,
|
90 |
+
groups=1,
|
91 |
+
data_format=self._data_format)
|
92 |
+
|
93 |
+
return out
|
94 |
+
class Encoder(paddle.nn.Layer):
|
95 |
+
def __init__(self, in_channels, out_channels):
|
96 |
+
super(Encoder, self).__init__()
|
97 |
+
|
98 |
+
self.relus = paddle.nn.LayerList(
|
99 |
+
[paddle.nn.ReLU() for i in range(2)])
|
100 |
+
self.separable_conv_01 = SeparableConv2D(in_channels,
|
101 |
+
out_channels,
|
102 |
+
kernel_size=3,
|
103 |
+
padding='same')
|
104 |
+
self.bns = paddle.nn.LayerList(
|
105 |
+
[paddle.nn.BatchNorm2D(out_channels) for i in range(2)])
|
106 |
+
|
107 |
+
self.separable_conv_02 = SeparableConv2D(out_channels,
|
108 |
+
out_channels,
|
109 |
+
kernel_size=3,
|
110 |
+
padding='same')
|
111 |
+
self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
112 |
+
self.residual_conv = paddle.nn.Conv2D(in_channels,
|
113 |
+
out_channels,
|
114 |
+
kernel_size=1,
|
115 |
+
stride=2,
|
116 |
+
padding='same')
|
117 |
+
|
118 |
+
def forward(self, inputs):
|
119 |
+
previous_block_activation = inputs
|
120 |
+
|
121 |
+
y = self.relus[0](inputs)
|
122 |
+
y = self.separable_conv_01(y)
|
123 |
+
y = self.bns[0](y)
|
124 |
+
y = self.relus[1](y)
|
125 |
+
y = self.separable_conv_02(y)
|
126 |
+
y = self.bns[1](y)
|
127 |
+
y = self.pool(y)
|
128 |
+
|
129 |
+
residual = self.residual_conv(previous_block_activation)
|
130 |
+
y = paddle.add(y, residual)
|
131 |
+
|
132 |
+
return y
|
133 |
+
class Decoder(paddle.nn.Layer):
|
134 |
+
def __init__(self, in_channels, out_channels):
|
135 |
+
super(Decoder, self).__init__()
|
136 |
+
|
137 |
+
self.relus = paddle.nn.LayerList(
|
138 |
+
[paddle.nn.ReLU() for i in range(2)])
|
139 |
+
self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,
|
140 |
+
out_channels,
|
141 |
+
kernel_size=3,
|
142 |
+
padding=1)
|
143 |
+
self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,
|
144 |
+
out_channels,
|
145 |
+
kernel_size=3,
|
146 |
+
padding=1)
|
147 |
+
self.bns = paddle.nn.LayerList(
|
148 |
+
[paddle.nn.BatchNorm2D(out_channels) for i in range(2)]
|
149 |
+
)
|
150 |
+
self.upsamples = paddle.nn.LayerList(
|
151 |
+
[paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]
|
152 |
+
)
|
153 |
+
self.residual_conv = paddle.nn.Conv2D(in_channels,
|
154 |
+
out_channels,
|
155 |
+
kernel_size=1,
|
156 |
+
padding='same')
|
157 |
+
|
158 |
+
def forward(self, inputs):
|
159 |
+
previous_block_activation = inputs
|
160 |
+
|
161 |
+
y = self.relus[0](inputs)
|
162 |
+
y = self.conv_transpose_01(y)
|
163 |
+
y = self.bns[0](y)
|
164 |
+
y = self.relus[1](y)
|
165 |
+
y = self.conv_transpose_02(y)
|
166 |
+
y = self.bns[1](y)
|
167 |
+
y = self.upsamples[0](y)
|
168 |
+
|
169 |
+
residual = self.upsamples[1](previous_block_activation)
|
170 |
+
residual = self.residual_conv(residual)
|
171 |
+
|
172 |
+
y = paddle.add(y, residual)
|
173 |
+
|
174 |
+
return y
|
175 |
+
class PetNet(paddle.nn.Layer):
|
176 |
+
def __init__(self, num_classes):
|
177 |
+
super(PetNet, self).__init__()
|
178 |
+
|
179 |
+
self.conv_1 = paddle.nn.Conv2D(3, 32,
|
180 |
+
kernel_size=3,
|
181 |
+
stride=2,
|
182 |
+
padding='same')
|
183 |
+
self.bn = paddle.nn.BatchNorm2D(32)
|
184 |
+
self.relu = paddle.nn.ReLU()
|
185 |
+
|
186 |
+
in_channels = 32
|
187 |
+
self.encoders = []
|
188 |
+
self.encoder_list = [64, 128, 256]
|
189 |
+
self.decoder_list = [256, 128, 64, 32]
|
190 |
+
|
191 |
+
for out_channels in self.encoder_list:
|
192 |
+
block = self.add_sublayer('encoder_{}'.format(out_channels),
|
193 |
+
Encoder(in_channels, out_channels))
|
194 |
+
self.encoders.append(block)
|
195 |
+
in_channels = out_channels
|
196 |
+
|
197 |
+
self.decoders = []
|
198 |
+
|
199 |
+
for out_channels in self.decoder_list:
|
200 |
+
block = self.add_sublayer('decoder_{}'.format(out_channels),
|
201 |
+
Decoder(in_channels, out_channels))
|
202 |
+
self.decoders.append(block)
|
203 |
+
in_channels = out_channels
|
204 |
+
|
205 |
+
self.output_conv = paddle.nn.Conv2D(in_channels,
|
206 |
+
num_classes,
|
207 |
+
kernel_size=3,
|
208 |
+
padding='same')
|
209 |
+
|
210 |
+
def forward(self, inputs):
|
211 |
+
y = self.conv_1(inputs)
|
212 |
+
y = self.bn(y)
|
213 |
+
y = self.relu(y)
|
214 |
+
|
215 |
+
for encoder in self.encoders:
|
216 |
+
y = encoder(y)
|
217 |
+
|
218 |
+
for decoder in self.decoders:
|
219 |
+
y = decoder(y)
|
220 |
+
|
221 |
+
y = self.output_conv(y)
|
222 |
+
return y
|
223 |
+
IMAGE_SIZE = (512, 512)
|
224 |
+
num_classes = 2
|
225 |
+
network = PetNet(num_classes)
|
226 |
+
model = paddle.Model(network)
|
227 |
+
|
228 |
+
optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())
|
229 |
+
layer_state_dict = paddle.load("mymodel.pdparams")
|
230 |
+
opt_state_dict = paddle.load("optimizer.pdopt")
|
231 |
+
|
232 |
+
network.set_state_dict(layer_state_dict)
|
233 |
+
optimizer.set_state_dict(opt_state_dict)
|
234 |
+
|
235 |
+
def FinalImage(mask,image):
|
236 |
+
# 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来
|
237 |
+
#输入 mask [0,255]的这招图
|
238 |
+
#image 必须无条件转化为512*512 三通道彩图
|
239 |
+
|
240 |
+
th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]
|
241 |
+
blur = cv.GaussianBlur(th,(33,33), 15)
|
242 |
+
heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)
|
243 |
+
Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)
|
244 |
+
return Blendermap
|
245 |
+
|
246 |
+
import gradio as gr
|
247 |
+
def Showsegmentation(image):
|
248 |
+
mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()
|
249 |
+
mask=mask.astype('uint8')*255
|
250 |
+
immask=cv.resize(mask, (512, 512))
|
251 |
+
image=cv.resize(image,(512,512))
|
252 |
+
blendmask=FinalImage(immask,image)
|
253 |
+
return blendmask
|
254 |
+
|
255 |
+
gr.Interface(fn=Showsegmentation, inputs="image", outputs="image").launch(share=True)
|