File size: 6,240 Bytes
d547ea8 d9a5de6 d547ea8 712c47e d547ea8 712c47e d547ea8 712c47e d547ea8 712c47e d547ea8 712c47e d547ea8 abcd896 d547ea8 abcd896 d547ea8 712c47e d547ea8 ed38cca d547ea8 712c47e d547ea8 658c679 ed38cca 712c47e d547ea8 abcd896 d547ea8 abcd896 d547ea8 abcd896 d547ea8 abcd896 d547ea8 712c47e d547ea8 56de3dd d547ea8 63c7357 d547ea8 56de3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
language: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
datasets:
- common_voice #TODO: remove if you did not use the common voice dataset
- CSS10
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Greek XLSR Wav2Vec2 Large 53 - CV + CSS10 #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53`
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
type: common_voice
args: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
metrics:
- name: Test WER
type: wer
value: 20.89 #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
---
# Wav2Vec2-Large-XLSR-53-greek
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10) datasets.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "el", split="test")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the greek test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "el", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 20.89 %
## Training
The Common Voice `train`, `validation`, and CSS10 datasets were used for training, added as `extra` split to the dataset. The sampling rate and format of the CSS10 files is different, hence the function `speech_file_to_array_fn` was changed to:
```
def speech_file_to_array_fn(batch):
try:
speech_array, sampling_rate = sf.read(batch["path"] + ".wav")
except:
speech_array, sampling_rate = librosa.load(batch["path"], sr = 16000, res_type='zero_order_hold')
sf.write(batch["path"] + ".wav", speech_array, sampling_rate, subtype='PCM_24')
batch["speech"] = speech_array
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["text"]
return batch
```
As suggested by [Florian Zimmermeister](https://github.com/flozi00).
The script used for training can be found in [run_common_voice.py](examples/research_projects/wav2vec2/run_common_voice.py), still pending of PR. The only changes are to `speech_file_to_array_fn`. Batch size was kept at 32 (using `gradient_accumulation_steps`) using one of the [OVH](https://www.ovh.com/) machines, with a V100 GPU (thank you very much [OVH](https://www.ovh.com/)). The model trained for 40 epochs, the first 20 with the `train+validation` splits, and then `extra` split was added with the data from CSS10 at the 20th epoch. |