|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- unicamp-dl/mmarco |
|
language: |
|
- ru |
|
library_name: sentence-transformers |
|
--- |
|
|
|
## Пример 1 |
|
```python |
|
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
sigmoid_fn = torch.nn.Sigmoid() |
|
# model = AutoModelForSequenceClassification.from_pretrained("/home/jovyan/pakorolev/ranker/deep_pavlov_mrr_0_8413") |
|
# tokenizer = AutoTokenizer.from_pretrained("/home/jovyan/pakorolev/ranker/deep_pavlov_mrr_0_8413") |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("PitKoro/cross-encoder-ru-msmarco-passage") |
|
tokenizer = AutoTokenizer.from_pretrained("PitKoro/cross-encoder-ru-msmarco-passage") |
|
|
|
text = [['привет', 'привет'],['привет', 'пока']] |
|
tokenized = tokenizer(text, return_tensors='pt') |
|
|
|
logits = model(**tokenized).logits |
|
output = sigmoid_fn(logits.flatten()) |
|
|
|
print(output) |
|
``` |
|
|
|
## Пример 2 |
|
```python |
|
from sentence_transformers.cross_encoder import CrossEncoder |
|
|
|
model = CrossEncoder("PitKoro/cross-encoder-ru-msmarco-passage", max_length=512) |
|
text = [['привет', 'привет'],['привет', 'пока']] |
|
|
|
output = model.predict(text) |
|
|
|
print(output) |
|
``` |