xls-r-300m-cv_8-fr / README.md
Plim's picture
update model card README.md
e0e93b5
|
raw
history blame
2.41 kB
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.2172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.9114 | 0.29 | 1000 | inf | 0.9997 |
| 1.2436 | 0.57 | 2000 | inf | 0.4310 |
| 1.0552 | 0.86 | 3000 | inf | 0.3144 |
| 1.0044 | 1.15 | 4000 | inf | 0.2814 |
| 0.9718 | 1.43 | 5000 | inf | 0.2658 |
| 0.9502 | 1.72 | 6000 | inf | 0.2566 |
| 0.9418 | 2.01 | 7000 | inf | 0.2476 |
| 0.9215 | 2.29 | 8000 | inf | 0.2420 |
| 0.9236 | 2.58 | 9000 | inf | 0.2388 |
| 0.9014 | 2.87 | 10000 | inf | 0.2354 |
| 0.8814 | 3.15 | 11000 | inf | 0.2312 |
| 0.8809 | 3.44 | 12000 | inf | 0.2285 |
| 0.8717 | 3.73 | 13000 | inf | 0.2263 |
| 0.8787 | 4.01 | 14000 | inf | 0.2218 |
| 0.8567 | 4.3 | 15000 | inf | 0.2193 |
| 0.8488 | 4.59 | 16000 | inf | 0.2187 |
| 0.8359 | 4.87 | 17000 | inf | 0.2172 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0