TurkishTranslator / README.md
PontifexMaximus's picture
update model card README.md
c64789b
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - opus_infopankki
metrics:
  - bleu
model-index:
  - name: opus-mt-tr-en-finetuned-tr-to-en
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: opus_infopankki
          type: opus_infopankki
          args: en-tr
        metrics:
          - name: Bleu
            type: bleu
            value: 54.7617

opus-mt-tr-en-finetuned-tr-to-en

This model is a fine-tuned version of Helsinki-NLP/opus-mt-tr-en on the opus_infopankki dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6924
  • Bleu: 54.7617
  • Gen Len: 13.5501

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 412 1.1776 43.3104 12.9297
1.4032 2.0 824 1.0750 45.7912 12.9155
1.2268 3.0 1236 1.0019 47.6255 12.9251
1.141 4.0 1648 0.9411 49.0649 12.9302
1.0651 5.0 2060 0.8929 50.4894 12.9066
1.0651 6.0 2472 0.8519 51.5072 12.9067
1.0025 7.0 2884 0.8180 52.5035 12.8875
0.9582 8.0 3296 0.7893 51.7587 13.5338
0.9173 9.0 3708 0.7655 52.3566 13.5376
0.8892 10.0 4120 0.7449 53.0488 13.5545
0.8639 11.0 4532 0.7285 53.5965 13.5539
0.8639 12.0 4944 0.7152 53.9433 13.5547
0.8424 13.0 5356 0.7053 54.2509 13.5502
0.8317 14.0 5768 0.6981 54.5339 13.5502
0.817 15.0 6180 0.6938 54.7068 13.5448
0.8155 16.0 6592 0.6924 54.7617 13.5501

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.7.1+cu110
  • Datasets 2.2.2
  • Tokenizers 0.12.1