metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Un dentista entrega a su paciente un cepillo de dientes. Él
- text: >-
Develop an app that uses augmented reality to teach users how to play
musical instruments.
- text: Complétez la phrase par la bonne réponse
- text: >-
Utilisez chaque phrase mot à mot comme première phrase du paragraphe
correspondant. Veillez à écrire à un niveau approprié pour ce type de
lecteur : {{TYPE}}
- text: >-
How about developing a smart gardening system that uses sensors and AI to
optimize plant growth and reduce water consumption.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/distiluse-base-multilingual-cased-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/distiluse-base-multilingual-cased-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 12 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
role |
|
instruction |
|
answer |
|
emotion |
|
context |
|
question |
|
example |
|
escape_hedge |
|
style |
|
choices |
|
tone-of-voice |
|
chain-of-thought |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Complétez la phrase par la bonne réponse")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.5725 | 1312 |
Label | Training Sample Count |
---|---|
role | 1002 |
instruction | 1868 |
answer | 1597 |
style | 492 |
context | 1235 |
question | 825 |
example | 243 |
chain-of-thought | 131 |
tone-of-voice | 146 |
choices | 78 |
escape_hedge | 94 |
emotion | 90 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.4007 | - |
0.0205 | 50 | 0.3796 | - |
0.0410 | 100 | 0.2563 | - |
0.0615 | 150 | 0.2319 | - |
0.0820 | 200 | 0.1506 | - |
0.1025 | 250 | 0.1284 | - |
0.1231 | 300 | 0.1219 | - |
0.1436 | 350 | 0.1333 | - |
0.1641 | 400 | 0.1144 | - |
0.1846 | 450 | 0.1923 | - |
0.2051 | 500 | 0.071 | - |
0.2256 | 550 | 0.1102 | - |
0.2461 | 600 | 0.1363 | - |
0.2666 | 650 | 0.1613 | - |
0.2871 | 700 | 0.1283 | - |
0.3076 | 750 | 0.1074 | - |
0.3281 | 800 | 0.0999 | - |
0.3486 | 850 | 0.0457 | - |
0.3692 | 900 | 0.0325 | - |
0.3897 | 950 | 0.0243 | - |
0.4102 | 1000 | 0.0564 | - |
0.4307 | 1050 | 0.0429 | - |
0.4512 | 1100 | 0.0457 | - |
0.4717 | 1150 | 0.0285 | - |
0.4922 | 1200 | 0.0158 | - |
0.5127 | 1250 | 0.0192 | - |
0.5332 | 1300 | 0.0247 | - |
0.5537 | 1350 | 0.0543 | - |
0.5742 | 1400 | 0.0448 | - |
0.5947 | 1450 | 0.0194 | - |
0.6153 | 1500 | 0.0405 | - |
0.6358 | 1550 | 0.055 | - |
0.6563 | 1600 | 0.025 | - |
0.6768 | 1650 | 0.0096 | - |
0.6973 | 1700 | 0.0074 | - |
0.7178 | 1750 | 0.0052 | - |
0.7383 | 1800 | 0.0009 | - |
0.7588 | 1850 | 0.0344 | - |
0.7793 | 1900 | 0.0328 | - |
0.7998 | 1950 | 0.014 | - |
0.8203 | 2000 | 0.0325 | - |
0.8409 | 2050 | 0.0332 | - |
0.8614 | 2100 | 0.0095 | - |
0.8819 | 2150 | 0.0022 | - |
0.9024 | 2200 | 0.0227 | - |
0.9229 | 2250 | 0.0019 | - |
0.9434 | 2300 | 0.0072 | - |
0.9639 | 2350 | 0.0039 | - |
0.9844 | 2400 | 0.001 | - |
1.0 | 2438 | - | 0.0817 |
1.0049 | 2450 | 0.0148 | - |
1.0254 | 2500 | 0.001 | - |
1.0459 | 2550 | 0.0053 | - |
1.0664 | 2600 | 0.0054 | - |
1.0870 | 2650 | 0.0053 | - |
1.1075 | 2700 | 0.0037 | - |
1.1280 | 2750 | 0.0089 | - |
1.1485 | 2800 | 0.0024 | - |
1.1690 | 2850 | 0.0067 | - |
1.1895 | 2900 | 0.0006 | - |
1.2100 | 2950 | 0.0074 | - |
1.2305 | 3000 | 0.001 | - |
1.2510 | 3050 | 0.0112 | - |
1.2715 | 3100 | 0.0015 | - |
1.2920 | 3150 | 0.0017 | - |
1.3126 | 3200 | 0.0003 | - |
1.3331 | 3250 | 0.001 | - |
1.3536 | 3300 | 0.0061 | - |
1.3741 | 3350 | 0.006 | - |
1.3946 | 3400 | 0.0002 | - |
1.4151 | 3450 | 0.0005 | - |
1.4356 | 3500 | 0.0023 | - |
1.4561 | 3550 | 0.0001 | - |
1.4766 | 3600 | 0.0389 | - |
1.4971 | 3650 | 0.0008 | - |
1.5176 | 3700 | 0.0009 | - |
1.5381 | 3750 | 0.0154 | - |
1.5587 | 3800 | 0.0007 | - |
1.5792 | 3850 | 0.0009 | - |
1.5997 | 3900 | 0.0014 | - |
1.6202 | 3950 | 0.0004 | - |
1.6407 | 4000 | 0.0226 | - |
1.6612 | 4050 | 0.0014 | - |
1.6817 | 4100 | 0.0135 | - |
1.7022 | 4150 | 0.0001 | - |
1.7227 | 4200 | 0.0141 | - |
1.7432 | 4250 | 0.0012 | - |
1.7637 | 4300 | 0.0008 | - |
1.7842 | 4350 | 0.0005 | - |
1.8048 | 4400 | 0.0003 | - |
1.8253 | 4450 | 0.0013 | - |
1.8458 | 4500 | 0.0004 | - |
1.8663 | 4550 | 0.0003 | - |
1.8868 | 4600 | 0.0007 | - |
1.9073 | 4650 | 0.001 | - |
1.9278 | 4700 | 0.0002 | - |
1.9483 | 4750 | 0.0421 | - |
1.9688 | 4800 | 0.0008 | - |
1.9893 | 4850 | 0.0009 | - |
2.0 | 4876 | - | 0.09 |
2.0098 | 4900 | 0.0001 | - |
2.0304 | 4950 | 0.0007 | - |
2.0509 | 5000 | 0.0003 | - |
2.0714 | 5050 | 0.0001 | - |
2.0919 | 5100 | 0.0001 | - |
2.1124 | 5150 | 0.0017 | - |
2.1329 | 5200 | 0.0004 | - |
2.1534 | 5250 | 0.0001 | - |
2.1739 | 5300 | 0.0013 | - |
2.1944 | 5350 | 0.0002 | - |
2.2149 | 5400 | 0.0009 | - |
2.2354 | 5450 | 0.0197 | - |
2.2559 | 5500 | 0.0287 | - |
2.2765 | 5550 | 0.0009 | - |
2.2970 | 5600 | 0.0116 | - |
2.3175 | 5650 | 0.0002 | - |
2.3380 | 5700 | 0.0003 | - |
2.3585 | 5750 | 0.002 | - |
2.3790 | 5800 | 0.0315 | - |
2.3995 | 5850 | 0.0001 | - |
2.4200 | 5900 | 0.0003 | - |
2.4405 | 5950 | 0.0001 | - |
2.4610 | 6000 | 0.0003 | - |
2.4815 | 6050 | 0.0005 | - |
2.5021 | 6100 | 0.0001 | - |
2.5226 | 6150 | 0.0001 | - |
2.5431 | 6200 | 0.0001 | - |
2.5636 | 6250 | 0.0002 | - |
2.5841 | 6300 | 0.0001 | - |
2.6046 | 6350 | 0.0002 | - |
2.6251 | 6400 | 0.0006 | - |
2.6456 | 6450 | 0.0065 | - |
2.6661 | 6500 | 0.0311 | - |
2.6866 | 6550 | 0.0143 | - |
2.7071 | 6600 | 0.0002 | - |
2.7276 | 6650 | 0.0002 | - |
2.7482 | 6700 | 0.0007 | - |
2.7687 | 6750 | 0.0004 | - |
2.7892 | 6800 | 0.0003 | - |
2.8097 | 6850 | 0.0004 | - |
2.8302 | 6900 | 0.0001 | - |
2.8507 | 6950 | 0.0001 | - |
2.8712 | 7000 | 0.0001 | - |
2.8917 | 7050 | 0.0002 | - |
2.9122 | 7100 | 0.0001 | - |
2.9327 | 7150 | 0.0001 | - |
2.9532 | 7200 | 0.0001 | - |
2.9737 | 7250 | 0.0002 | - |
2.9943 | 7300 | 0.0001 | - |
3.0 | 7314 | - | 0.0958 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.4
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.36.2
- PyTorch: 1.13.0+cpu
- Datasets: 2.16.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}