metadata
language:
- en
- ko
license: cc-by-nc-sa-4.0
pipeline_tag: text-generation
model-index:
- name: SOLAR-tail-10.7B-Merge-v1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.13
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.54
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.52
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.57
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.58
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0
name: Open LLM Leaderboard
SOLAR-tail-10.7B-Merge-v1.0
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
Using Mergekit.
Merge config
slices:
- sources:
- model: upstage/SOLAR-10.7B-v1.0
layer_range: [0, 48]
- model: Yhyu13/LMCocktail-10.7B-v1
layer_range: [0, 48]
merge_method: slerp
base_model: upstage/SOLAR-10.7B-v1.0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
tokenizer_source: union
dtype: float16
Model Benchmark
Open Ko leaderboard
- Follow up as Ko-link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Ko-CommonGenV2 |
---|---|---|---|---|---|---|
PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 | 48.32 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 |
jjourney1125/M-SOLAR-10.7B-v1.0 | 55.15 | 49.57 | 60.12 | 54.60 | 49.23 | 62.22 |
- Follow up as En-link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 71.68 66.13 86.54 66.52 60.57 84.77 65.58 kyujinpy/Sakura-SOLAR-Instruct 74.40 70.99 88.42 66.33 71.79 83.66 65.20
lm-evaluation-harness
gpt2 (pretrained=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.5021|± |0.0133|
| | |macro_f1|0.3343|± |0.0059|
|kobest_copa | 0|acc |0.6220|± |0.0153|
| | |macro_f1|0.6217|± |0.0154|
|kobest_hellaswag| 0|acc |0.4380|± |0.0222|
| | |acc_norm|0.5380|± |0.0223|
| | |macro_f1|0.4366|± |0.0222|
|kobest_sentineg | 0|acc |0.4962|± |0.0251|
| | |macro_f1|0.3316|± |0.0113|
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.68 |
AI2 Reasoning Challenge (25-Shot) | 66.13 |
HellaSwag (10-Shot) | 86.54 |
MMLU (5-Shot) | 66.52 |
TruthfulQA (0-shot) | 60.57 |
Winogrande (5-shot) | 84.77 |
GSM8k (5-shot) | 65.58 |