metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: Prasadrao/xlm-roberta-large-go-emotions-v2
model-index:
- name: xlm-roberta-large-go-emotions-v3
results: []
datasets:
- go_emotions
xlm-roberta-large-go-emotions-v3
This model is a fine-tuned version of Prasadrao/xlm-roberta-large-go-emotions-v2 on go emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.0953
- Accuracy: 0.4534
- Precision: 0.5400
- Recall: 0.5187
- F1: 0.5151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 1357 | 0.0929 | 0.4624 | 0.5267 | 0.5037 | 0.5051 |
0.0467 | 2.0 | 2714 | 0.0953 | 0.4534 | 0.5400 | 0.5187 | 0.5151 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.1