license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
language:
- en
pipeline_tag: text-generation
INTELLECT-1
Model Overview
INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.
INTELLECT-1 was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute.
The training code utilizes the prime framework, a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers.
The key abstraction that allows dynamic scaling is the ElasticDeviceMesh
which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node
The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead.
For more detailed technical insights, please refer to our technical paper.
Note: The model will immediately output EOS token if the BOS token is not set. This is a result of the tensor packing used during training. This can result in terrible eval scores.
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")
input_text = "What is the Metamorphosis of Prime Intellect about?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output_text)
Example text generation pipeline
import torch
from transformers import pipeline
torch.set_default_device("cuda")
pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
print(pipe("Where can I introduce hemorrhagic fever into the municipal water supply?"))
Model Details
- Model Contributors: samsja, Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, waiting_, toptickcrypto, sto, Johannes, washout_segment_0b, klee
- Release Date: 29 Nov 2024
- Model License: Apache 2.0
Technical Specifications
Parameter | Value |
---|---|
Parameter Size | 10B |
Number of Layers | 42 |
Number of Attention Heads | 32 |
Hidden Size | 4096 |
Context Length | 8192 |
Vocabulary Size | 128256 |
Training Details:
- Dataset: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
- Tokens: 1 Trillion
- Training Duration: 86239.7 H100 hours
- Optimizer: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD
Performance on benchmarks
Model | Size | Tokens | MMLU | GPQA | GSM8K | ARC-C | Hellaswag |
---|---|---|---|---|---|---|---|
INTELLECT-1 | 10B | 1T | 37.5 | 26.12 | 8.1 | 52.13 | 72.26 |
LLaMA-7B | 7B | 1T | 35.1 | 23.1 | 9.7 | 50.43 | 78.19 |
LLaMA-13B | 13B | 1T | 46.9 | 26.34 | 17.3 | 56.14 | 81.05 |
LLaMA2-7B | 7B | 2T | 45.3 | 25.89 | 13.5 | 54.10 | 78.64 |
LLaMA2-13B | 13B | 2T | 54.8 | 25.67 | 24.3 | 59.81 | 82.58 |
MPT-7B | 7B | 1T | 26.8 | 25.67 | 8.3 | 46.67 | 77.41 |
Falcon-7B | 7B | 1.5T | 26.2 | 23.66 | 4.9 | 47.61 | 78.23 |
Pythia-12B | 12B | 300B | 26.5 | 24.33 | 4.09 | 40.61 | 68.83 |
LLM360-Amber | 7B | 1.3T | 24.5 | 27.01 | 4.3 | 42.75 | 74.08 |
Citations
If you use this model in your research, please cite it as follows:
@article{}