English
Pytorch
gravity wave
Weather & Climate
Foundation model
Edit model card

This repository contains pretrained model for Gravity Wave Flux Parametrization downstream task.

Gravity Wave

Model

The pretrained Prithvi WxC parameter model is finetuned to predict momentum fluxes from the Gravity Wave Parameterization dataset.

Input: 491 (3 + 4x122) channels.

  1. latitude (1)
  2. longitude (1)
  3. surface elevation (1)
  4. zonal winds uu (122)
  5. meridional winds vv (122) 6.
  6. temperature TT (122)
  7. pressure PP (122)

Output: 366 (3x122) channels.

  1. potential temperature θ\theta (122)
  2. zonal flux of vertical momentum uωu'\omega' (122)
  3. meridional flux of vertical momentum vωv'\omega' (122)

Code

Code for fine-tuning is available through Github.

Results

Gravity Wave

For the Andes (mountain waves) and the Southern Ocean (non-mountain waves), the fine-tuned model achieves correlation coefficients of 0.99 and 0.97, respectively, when compared to the observed fluxes.

Inference and demo

The github repo includes an inference script that allows to run the gravity_wave_model model for inference on sample dataset.

Citation

If you use this work, consider citing our paper

@misc{schmude2024prithviwxcfoundationmodel,
      title={Prithvi WxC: Foundation Model for Weather and Climate}, 
      author={Johannes Schmude and Sujit Roy and Will Trojak and Johannes Jakubik and Daniel Salles Civitarese and Shraddha Singh and Julian Kuehnert and Kumar Ankur and Aman Gupta and Christopher E Phillips and Romeo Kienzler and Daniela Szwarcman and Vishal Gaur and Rajat Shinde and Rohit Lal and Arlindo Da Silva and Jorge Luis Guevara Diaz and Anne Jones and Simon Pfreundschuh and Amy Lin and Aditi Sheshadri and Udaysankar Nair and Valentine Anantharaj and Hendrik Hamann and Campbell Watson and Manil Maskey and Tsengdar J Lee and Juan Bernabe Moreno and Rahul Ramachandran},
      year={2024},
      eprint={2409.13598},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2409.13598}, 
}
@article{gupta2024machine,
  title={Machine learning global simulation of nonlocal gravity wave propagation},
  author={Gupta, Aman and Sheshadri, Aditi and Roy, Sujit and Gaur, Vishal and Maskey, Manil and Ramachandran, Rahul},
  journal={arXiv preprint arXiv:2406.14775},
  year={2024}
}
Downloads last month
33
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Prithvi-WxC/Gravity_wave_Parameterization

Finetuned
(1)
this model

Dataset used to train Prithvi-WxC/Gravity_wave_Parameterization