|
--- |
|
license: apache-2.0 |
|
library_name: pruna-engine |
|
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" |
|
metrics: |
|
- memory_disk |
|
- memory_inference |
|
- inference_latency |
|
- inference_throughput |
|
- inference_CO2_emissions |
|
- inference_energy_consumption |
|
--- |
|
<!-- header start --> |
|
<!-- 200823 --> |
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> |
|
<img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</a> |
|
</div> |
|
<!-- header end --> |
|
|
|
|
|
<div style="color: #9B1DBE; font-size: 2em; font-weight: bold;"> |
|
Deprecation Notice: This model is deprecated and will no longer receive updates. |
|
</div> |
|
<br><br> |
|
|
|
# Simply make AI models cheaper, smaller, faster, and greener! |
|
|
|
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) |
|
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) |
|
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) |
|
|
|
- Give a thumbs up if you like this model! |
|
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). |
|
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
|
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) |
|
- Share feedback and suggestions on the Slack of Pruna AI (Coming soon!). |
|
|
|
## Results |
|
|
|
![image info](./plots.png) |
|
|
|
**Important remarks:** |
|
- The quality of the model output might slightly vary compared to the base model. There might be minimal quality loss. |
|
- These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in config.json and are obtained after a hardware warmup. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). |
|
- You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
|
|
|
## Setup |
|
|
|
You can run the smashed model with these steps: |
|
|
|
0. Check cuda, torch, packaging requirements are installed. For cuda, check with `nvcc --version` and install with `conda install nvidia/label/cuda-12.1.0::cuda`. For packaging and torch, run `pip install packaging torch`. |
|
1. Install the `pruna-engine` available [here](https://pypi.org/project/pruna-engine/) on Pypi. It might take 15 minutes to install. |
|
```bash |
|
pip install pruna-engine[gpu] --extra-index-url https://pypi.nvidia.com --extra-index-url https://pypi.ngc.nvidia.com --extra-index-url https://prunaai.pythonanywhere.com/ |
|
``` |
|
3. Download the model files using one of these three options. |
|
- Option 1 - Use command line interface (CLI): |
|
```bash |
|
mkdir segmind-SSD-1B-turbo-green-smashed |
|
huggingface-cli download PrunaAI/segmind-SSD-1B-turbo-green-smashed --local-dir segmind-SSD-1B-turbo-green-smashed --local-dir-use-symlinks False |
|
``` |
|
- Option 2 - Use Python: |
|
```python |
|
import subprocess |
|
repo_name = "segmind-SSD-1B-turbo-green-smashed" |
|
subprocess.run(["mkdir", repo_name]) |
|
subprocess.run(["huggingface-cli", "download", 'PrunaAI/'+ repo_name, "--local-dir", repo_name, "--local-dir-use-symlinks", "False"]) |
|
``` |
|
- Option 3 - Download them manually on the HuggingFace model page. |
|
3. Load & run the model. |
|
```python |
|
from pruna_engine.PrunaModel import PrunaModel |
|
|
|
model_path = "segmind-SSD-1B-turbo-green-smashed/model" # Specify the downloaded model path. |
|
smashed_model = PrunaModel.load_model(model_path) # Load the model. |
|
smashed_model(prompt='Beautiful fruits in trees', height=1024, width=1024)[0][0] # Run the model where x is the expected input of. |
|
``` |
|
|
|
## Configurations |
|
|
|
The configuration info are in `config.json`. |
|
|
|
## License |
|
|
|
We follow the same license as the original model. Please check the license of the original model segmind/SSD-1B before using this model. |
|
|
|
## Want to compress other models? |
|
|
|
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). |
|
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |