Edit model card

QuantFactory Banner

QuantFactory/Einstein-v6.1-Llama3-8B-GGUF

This is quantized version of Weyaxi/Einstein-v6.1-Llama3-8B created using llama.cpp

Original Model Card

image/png

🔬 Einstein-v6.1-Llama3-8B

This model is a full fine-tuned version of meta-llama/Meta-Llama-3-8B on diverse datasets.

This model is finetuned using 8xRTX3090 + 1xRTXA6000 using axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: data/merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/gpteacher-instruct-special-alpaca.json
    ds_type: json
    type: gpteacher
    conversation: chatml

  - path: data/wizardlm_evol_instruct_70k_random_half.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/capybara_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/synthia-v1.3_sharegpt_12500.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/slimorca_dedup_filtered_95k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml  

  - path: data/pippa_bagel_repo_3k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/gpt4_data_lmys_1m_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/sharegpt_gpt4_english.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/no_robots_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

  - path: data/oasst_top1_from_fusechatmixture_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

  - path: data/everythinglm-data-v3_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.002

output_dir: ./Einstein-v6.1-Llama3-8B-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name: Einstein-v6.1-Llama3-2-epoch
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v6.1-Llama3-8B

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit # look
lr_scheduler: cosine
learning_rate: 0.000005 # look

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2
debug:

deepspeed: zero3_bf16_cpuoffload_params.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
  pad_token: <|end_of_text|> # changed
tokens:
  - "<|im_start|>"

💬 Prompt Template

You can use ChatML prompt template while using the model:

ChatML

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:

messages = [
    {"role": "system", "content": "You are helpful AI asistant."},
    {"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)

📊 Datasets used in this model

The datasets used to train this model are listed in the metadata section of the model card.

Please note that certain datasets mentioned in the metadata may have undergone filtering based on various criteria.

The results of this filtering process and its outcomes are in the data folder of this repository:

Weyaxi/Einstein-v6.1-Llama3-8B/data

🔄 Quantizationed versions

GGUF @bartowski

ExLlamaV2 @bartowski

AWQ @solidrust

🎯 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.60
AI2 Reasoning Challenge (25-Shot) 62.46
HellaSwag (10-Shot) 82.41
MMLU (5-Shot) 66.19
TruthfulQA (0-shot) 55.10
Winogrande (5-shot) 79.32
GSM8k (5-shot) 66.11

🎯 Open LLM Leaderboard v2 Evaluation Results

Detailed results can be found here

Metric Value
Avg. 19.99
IFEval (0-Shot) 45.68
BBH (3-Shot) 29.38
MATH Lvl 5 (4-Shot) 5.74
GPQA (0-shot) 4.25
MuSR (0-shot) 11.23
MMLU-PRO (5-shot) 23.68

📚 Some resources, discussions and reviews aboout this model

🐦 Announcement tweet:

🔍 Reddit post in r/LocalLLaMA:

▶️ Youtube Video(s)

📱 Octopus-V4-3B

🤖 Additional information about training

This model is full fine-tuned for 2 epoch.

Total number of steps was 2026.

Loss graph

image/png


🤝 Acknowledgments

Thanks to sablo.ai for sponsoring this model.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Thanks to all open source AI community.

Built with Axolotl

If you would like to support me:

☕ Buy Me a Coffee

Downloads last month
999
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for QuantFactory/Einstein-v6.1-Llama3-8B-GGUF

Quantized
(233)
this model

Datasets used to train QuantFactory/Einstein-v6.1-Llama3-8B-GGUF

Evaluation results